Graph Traversal

http://www.cs.unh.edu/~ruml/cs758
Graph Traversal
directed, arc/edge, weighted, labeled. drawings
representation
relations \rightarrow edges
cycle, DAG, tree, planar
Breadth-first Search

Graph Traversal

traversal: Graph → forest
The Algorithm

Graph Traversal

1. foreach vertex, label it undiscovered and \(v.d \) \(\leftarrow\) \(\infty\)
2. start's label \(\leftarrow\) discovered, \(d \) \(\leftarrow\) 0, \(\pi \) \(\leftarrow\) nil
3. \(\{\text{start}\}\) \(\leftarrow\) \(\emptyset\)
4. while \(\emptyset\) not empty
 4.1. label \(u \) finished
 5. \(\emptyset\) enqueue \(u \)
 6. foreach neighbor \(v \) of \(u \)
 7. if \(v \) is undiscovered
 8. label \(v \) discovered, \(v.d \) \(\leftarrow\) \(u.d + 1\), \(v.\pi \) \(\leftarrow\) \(u\)
 9. enqueue \(v \) in \(\emptyset\)
10. label \(u \) finished

What's the time complexity?
Do we really need all the labels?
Which vertices does \(\emptyset\) hold (at line 4)?

\[n \rightarrow \nu, \quad v.\nu + p.n \rightarrow p.\nu \]

Full Algorithm

Graph Traversal

Wheeler Ruml (UNH) Class 13, CS 758 - 5 / 12
Class 13, CS 758 – 6 / 12

The Full Algorithm

1. foreach vertex, label it undiscovered and
 \(v.d \leftarrow \infty \)
2. foreach vertex
3. if \(s \) is undiscovered
4. label \(s \) discovered, \(s.d \leftarrow 0, s.\pi \leftarrow \text{null} \)
5. \(\{s\} \rightarrow Q \)
6. while \(Q \) not empty
7. \(n \rightarrow \mathcal{O} \)
8. foreach neighbor \(v \) of \(n \)
9. if \(v \) is undiscovered
10. label \(v \) discovered, \(v.d \leftarrow u.d + 1, v.\pi \leftarrow u \)
11. enqueue \(v \) in \(Q \)
12. label \(u \) finished

What’s the time complexity?
Join ACM for $19
wildcard vote in one month
midterm
ass 8
ass 7
4. At termination, \(v.d = (n,s)q = p \cdot n \cdot \delta(s,v) \); shortest path length

\[
\text{last.d} \leq \text{removed.d} + 1 = \text{new.d}.
\]

\[
\text{EOLQs: new.d} = \text{removed.d} + 1 > \text{first.d} + 1 \text{ and}
\]

Preserved by dequeue.

Proof: By induction. True when queue is \(s \).

First by at most \(t \).

3. \(p \) values in queue are nondecreasing and last in queue exceeds

\[
(n,s)q \leq I + (n,s)q \leq I + p \cdot n \cdot \delta(s,u) + 1 \geq \delta(s,v).
\]

Proof: By induction over iterations:

\[
(n,s)q \leq p \cdot n \cdot \delta(s,v).
\]

via induction over iterations.

2. \(v.d \) is updated to

Start: \(v.d \) is updated to \((n,s)q \leq I + p \cdot n \).

Proof: Show \(\forall (n,s)q \leq p \cdot n \).

1. Distances we assign always stay the same or go down.
Claim: at termination, \(v.d = \delta(s, v) \), shortest path length.

Proof: Consider \(v \) with minimum incorrect distance, and let \(u \) be predecessor. If \(u \) is already finished, then \(v.d \leq u.d \), contradiction.

If \(u \) is undiscovered, it would then be correct, contradiction.

Contradiction:

\[
\text{Proof:}\quad p.n + 1 + p.m = p.v + p.m = p.w + (n)q < p.w + 1
\]
Depth-first Search

Vs breadth-first?

Discovery and finish times are parenthesized.

What's the time complexity?

DFS

1. forall vertices, label ← undiscovered
2. DFS-visit(start)
 2. DFS-visit(start)
 3. label n discovered
5. if v is undiscovered
4. foreach neighbor v of n
 4. foreach neighbor v of n
 5. if v is undiscovered
 6. v.π ← u
 7. n → • v
6. n → • v
7. DFS-visit(v)
8. label n finished

What's the time complexity?

Discovery and finish times are parenthesized.
When edge is explored, label of arc dest gives type:

- **tree** when edge is explored, label of arc dest gives type
- **forward** connects to ancestor in tree
- **back** in depth-first tree
- **cross** non-tree edge connecting to descendant in tree
- **other** non-ancestors/non-decendants or different DFS
Thanks!

and put it in the box on your way out.

Please write down your most pressing question about algorithms:

What would you like to hear more about?

What question didn’t you get to ask today?

What’s still confusing?

For example: