http://www.cs.unh.edu/~ruml/cs758
check your Wildcat Pass before coming to campus
if you have concerns, let me know
DP

- Counting
- 0-1 Knapsack
- Time Complexity
- Break

More DP
You are late for a meeting that is held on the floor above your current location. You can climb the staircase one step at a time, two steps at a time, or, with great effort, three steps at a time. As you are rushing upstairs, you have a sudden flash of insight into how to count the number of ways of climbing a staircase of \(n \) steps. What is the algorithm?
Given n objects with integer weights w_i and values v_i, what is the most valuable subset that weighs at most W?
Given \(n \) objects with integer weights \(w_i \) and values \(v_i \), what is the most valuable subset that weighs at most \(W \)?

Give an algorithm that runs in \(O(nW) \) time.
Given \(n \) objects with integer weights \(w_i \) and values \(v_i \), what is the most valuable subset that weighs at most \(W \)?

Give an algorithm that runs in \(O(nW) \) time.

Will greedy work? What if items can be divided?
what is the length of the input?
what is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size.
what is the length of the input?

pseudo-polynomial time: polynomial if the magnitude of the input numbers is polynomial in the input size.

Does this apply to radix sort?
Break

- asst 5
- asst 6
- midterm
More DP

- COVID DP
- More DP
- Increasing Subseq
- EOLQs
Longest Increasing Subsequence

Given a sequence of length n consisting of numbers, give an $O(n^2)$ algorithm that finds the longest (not necessarily contiguous) subsequence that consists of monotonically increasing values.
Given a sequence of length n consisting of numbers, give an $O(n^2)$ algorithm that finds the longest (not necessarily contiguous) subsequence that consists of monotonically increasing values.

BTW, there is an $O(n \log n)$ algorithm
For example:

- What’s still confusing?
- What question didn’t you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!