CS 758/858: Algorithms

Algorithms	
This Class	
Sorting	
Complexity	http://ww
	course
	online han
	1 physical si

Prof. Wheeler Ruml TA Steve Wissow

http://www.cs.unh.edu/~ruml/cs758

4 handouts: course info, schedule, slides, asst 1

online handouts: programming, functions

1 physical sign-up laptop (for grades, piazza)

Algorithms

■ Algorithms Today

Definition

■ Why?

■ The Word

■ The Founder

This Class

Sorting

Complexity

Algorithms

Wheeler Ruml (UNH)

Class 1, CS 758 – 2 / 25

Algorithms Today

Algorithms
Algorithms Today
Definition
■ Why?
■ The Word
■ The Founder
This Class
Sorting

Complexity

web: search, caching, crypto

networking: routing, synchronization, failover machine learning: data mining, recommendation, prediction bioinformatics: alignment, matching, clustering hardware: design, simulation, verification business: allocation, planning, scheduling finance: trading, credit scoring, fraud detection government: bail, sentencing, social scoring Al: robotics, games, language, vision

Definition

Algorithms Algorithms Today Definition Why? The Word

■ The Founder

This Class

Sorting

Complexity

Algorithm

- input into output
- precisely defined
- mechanical steps
 - terminates

What might we want to know about it?

Why?

Algorithms

- Algorithms Today
- Definition
- □ Why?
- The Word
- The Founder

This Class

Sorting

Complexity

- Computer scientist \neq programmer
 - understand program behavior
 - have confidence in results, performance
 - know when optimality is abandoned
 - solve 'impossible' problems
 - sets you apart (eg, interviewing)
- CPUs aren't getting faster
- Devices are getting smaller
- Software is the differentiator

'Software is eating the world' — Marc Andreessen, 2011

Everything is computation

The Word: Abū 'Abdallāh Muḥammad ibn Mūsā al-Khwārizmī

Algorithms

- Algorithms Today
- Definition
- Why?
- The Word
- The Founder

This Class

Sorting

Complexity

780-850 AD
Born in Uzbekistan, worked in Baghdad.
Solution of linear and quadratic equations.
Founder of algebra.
Popularized arabic numerals, decimal positional numbers
→ algorism (manipulating digits)

 \rightarrow algorithm.

The Compendious Book on Calculation by Completion and Balancing, 830.

The Founder: Donald E. Knuth

Algorithms

- Algorithms Today
- Definition
- Why?
- The Word

The Founder

This Class

Sorting

Complexity

invented algorithm analysis, *O The Art of Computer Programming*, vol. 1, 1968

developed T_EX, literate programming

famous results, students published in MAD magazine

Algorithms

This Class

- Relations
- Topics
- Course Mechanics

Sorting

Complexity

This Class

Wheeler Ruml (UNH)

Class 1, CS 758 – 8 / 25

Relations

Algorithms
This Class
Relations
Topics
Course Mechanics
Sorting

Complexity

requires 531/659 (proofs), 515 (data structures), 420 (C) some intentional overlap! beware imposter syndrome problems intentionally unpredigested central (required for BS CS and BS DS) same content both semesters

continuous improvement!

Topics

Algorithms

This Class

Sorting

Complexity

Relations
 Topics

Course Mechanics

'Greatest Hits'

- 1. data structures: trees, tries, hashing
 - 2. algorithms: divide-and-conquer, dynamic programming, greedy, graphs
 - 3. correctness: invariants
 - 4. complexity: time and space
 - 5. NP-completeness: reductions
 - Not including
 - 1. (much) computability
 - 2. (many) randomized algorithms
 - 3. parallel algorithms
 - 4. distributed algorithms
 - 5. numerical algorithms, eg: crypto, linear algebra
 - 6. geometric algorithms
 - 7. on-line or 'run forever' algorithms
 - 8. fancy analysis

Course Mechanics

Algorithms

- This Class
- Relations
- Topics
- Course Mechanics

Sorting

Complexity

- $\blacksquare names \rightarrow faces$
- sign up sheet
- General information
 - contact, books, C, due dates, collaboration, piazza.com
- Schedule
 - wildcard slot
- Expectations
 - ♦ 50/4=12.5; 50/3=16.7
 - ◆ 2018: median 12, mean 12.8, stddev 5.5
 - ◆ 2023: median 16, mean 16.1, stddev 5.2
- Feedback is always needed and appreciated.
 - eg, EOLQs. Try coming to my office hours!

Algorithms

This Class

Sorting

■ Sorting

 $\blacksquare Counting Sort$

Correctness

Complexity

Sorting

Wheeler Ruml (UNH)

Class 1, CS 758 – 12 / 25

Sorting

Algorithms This Class Sorting

- Counting Sort
- Correctness

Complexity

- Bubble Sort
- Selection Sort
- Insertion Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort

How to sort one million records?

Sorting

Algorithms This Class Sorting

- Sorting
- Counting Sort
- Correctness

Complexity

- Bubble Sort
- Selection Sort
- Insertion Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort

How to sort one million records?

How to sort one billion 16-bit integers?

Sorting

Algorithms This Class Sorting Sorting

- Counting Sort
- Correctness

Complexity

- Bubble Sort
- Selection Sort
- Insertion Sort
- Shell Sort
- Merge Sort
- Heap Sort
- Quick Sort

How to sort one million records?

How to sort one billion 16-bit integers?

How to sort one trillion 4-bit integers?

Class 1, CS 758 – 13 / 25

Counting Sort

Algorithms

This Class

Sorting

Sorting

Counting Sort

Correctness

Complexity

For n numbers in the range 0 to k:

- 1. for i from 0 to k
- 2. $\operatorname{count}[i] \leftarrow 0$
- 3. for each input number x
- 4. increment count[x]
- 5. for i from 0 to k
- 6. do count[i] times
- 7. emit i

Counting Sort

Algorithms

This Class

Sorting

Sorting

Counting Sort

Correctness

Complexity

For n numbers in the range 0 to k:

1. for i from 0 to k

2. $\operatorname{count}[i] \leftarrow 0$

3. for each input number x

4. increment count[x]

5. for $i \ {\rm from} \ 0$ to k

6. do count[i] times

7. emit i

Correctness?

Complexity?

Algorithms

This Class

Sorting

■ Sorting

■ Counting Sort

Correctness

Complexity

property 1: output is in sorted order proof sketch: output loop increments i, never decrements

Algorithms

This Class

Sorting

Sorting

■ Counting Sort

Correctness

Complexity

property 1: output is in sorted order proof sketch: output loop increments i, never decrements

property 2: output contains same numbers as input invariant:

Algorithms

This Class

Sorting

Sorting

Counting Sort

Correctness

Complexity

property 1: output is in sorted order proof sketch: output loop increments i, never decrements

property 2: output contains same numbers as input invariant: for each value,

remaining input + sum of counts = total proof sketch:

Algorithms	

This Class

Sorting

Sorting

Counting Sort

Correctness

Complexity

property 1: output is in sorted order proof sketch: output loop increments i, never decrements

property 2: output contains same numbers as input invariant: for each value,

remaining input + sum of counts = total
proof sketch:
initialized/established: before line 3
maintained: through lines 3–4
at termination: no remaining input by line 5
 each number printed count times
 therefore, output has same numbers as input

Algorithms

This Class

Sorting

Complexity

 \blacksquare Counting Sort

■ Complexity

■ Counting Sort

Order Notation

■ O()

Examples

And Friends

Asymptotics

EOLQs

Complexity

Wheeler Ruml (UNH)

Class 1, CS 758 – 16 / 25

Counting Sort

Algorithms

This Class

Sorting

Complexity

- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

For n numbers in the range 0 to k:

- 1. for i from 0 to k
- 2. $\operatorname{count}[i] \leftarrow 0$
- 3. for each input number x
- 4. increment count[x]
- 5. for $i \mbox{ from 0 to } k$
- 6. do count[i] times
- 7. emit i

Correctness? Yes.

Complexity?

Complexity

Algorithms

This Class

Sorting

Complexity

■ Counting Sort

Complexity

■ Counting Sort

- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

RAM model: no cache order of growth worst-case

[try with previous slide]

Wheeler Ruml (UNH)

Class 1, CS 758 – 18 / 25

Counting Sort

Algorithms

This Class

Sorting

Complexity

Counting Sort

Complexity

Counting Sort

Order Notation

■ O()

Examples

And Friends

Asymptotics

EOLQs

For n numbers in the range 0 to k:

1. for x from 0 to k2. count $[x] \leftarrow 0$ 3. for each input number x4. increment count[x]5. for x from 0 to k6. do count[x] times 7. emit x

O(k) times around loop iterates O(n) times total O(1) each time

O(k)

O(n)

 $O(k+n+k+n) = O(2n+2k) = O(n+k) \neq O(n \lg n)$

Order Notation

Algorithms

This Class

Sorting

Complexity

- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

ignore constant factors ignore 'start-up costs' upper bound

Order Notation

Algorithms

This Class

Sorting

Complexity

- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

ignore constant factors ignore 'start-up costs' upper bound

eg, running time is $O(n\log n)$

Class 1, CS 758 – 20 / 25

<u>O()</u>

Algorithms

This Class

Sorting

Complexity

■ Counting Sort

Complexity

■ Counting Sort

Order Notation

■ O()

Examples

And Friends

Asymptotics

EOLQs

 $O(g(n)) = \{f(n) : \text{there exist positive constants } c, n_0$ such that $f(n) \le cg(n)$ for all $n \ge n_o\}$

We can upper-bound (the tail of) f by scaling up g.

Note non-transitive use of =. Pronounced 'is'.

1.
$$0.002x^2 - 35,456x + 2^{80}$$

2. $O(n^2)$ vs $O(n^3)$
3. $O(2^n)$ vs $O(3^n)$
4. $O(2^n)$ vs $O(2^{n+2})$ vs $O(2^{2n})$ vs $O(n^n)$
"What is n ?"

Wheeler Ruml (UNH)

Eg:

Examples

Algorithms

This Class

Sorting

Complexity

- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

is
$$n^3 = O(n^2)$$

 $0.2x^2 - 456x + 2^{20}$
 $10n^2 + 5n$
 $O(n^2)$ vs $O(n^3)$

And Friends

Algorithms

This Class

Sorting

Complexity

Counting Sort

Complexity

■ Counting Sort

Order Notation

■ O()

Examples

And Friends

Asymptotics

EOLQs

 $\begin{array}{ll} \mbox{Upper bound ('order of'):}\\ O(g(n)) = & \{f(n): \mbox{there exist positive constants } c, n_0 \\ & \mbox{ such that } f(n) \leq cg(n) \mbox{ for all } n \geq n_o \} \end{array}$

Lower bound: $\Omega(g(n)) = \{f(n) : \text{there exist positive constants } c, n_0 \\ \text{such that } cg(n) \le f(n) \text{ for all } n \ge n_o \}$

Tight bound: $\Theta(g(n)) = \begin{cases} f(n) : \text{there exist positive constants } c_1, c_2, n_0 \\ \text{such that } c_1g(n) \le f(n) \le c_2g(n) \text{ for all } n \ge n_o \end{cases}$

Class 1, CS 758 – 23 / 25

Asymptotics

Algorithms

This Class

Sorting

Complexity

- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

Upper bound ('dominated by'):

$$o(g(n)) = \{f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = 0\}$$

Lower bound ('dominates'):

$$\omega(g(n)) = \{f(n) : \lim_{n \to \infty} \frac{f(n)}{g(n)} = \infty\}$$

EOLQs

Algorithms

This Class

Sorting

Complexity

- Counting Sort
- Complexity
- Counting Sort
- Order Notation
- O()
- Examples
- And Friends
- Asymptotics
- EOLQs

- What's still confusing?
- What question didn't you get to ask today?
- What would you like to hear more about?

Please write down your most pressing question about algorithms and put it in the box on your way out.

Thanks!