158 Chapte} 4 The Theory of Resolution

something more like English. The first says that either ¢ < 0 or g(¢) > 0. This
simply guarantees that § = g(¢) is greater than zero whenever ¢ is. The sec-
ond clause is more interesting. It states that either |f(z) — L] < € or one of
the three conditions

€e>0, |le—al<é z#a

fails to hold. Perhaps the process of Skolemization and finding clausal form
has helped you understand the notion of limits better—or maybe it made
limits more confusing! MW

Unification

The unification problem is as follows. Suppose we have the Skolemized clausal
form of a formula. Let p(ty,...,t,) and —p(t,..., 1)) be predicates from two
different clauses, where ¢; and ¢} are terms. Unification is the process of substi-
tuting terms for some (or all) variables so that, after the substitution, ¢; and
t, are the same term for 1 < ¢ < n. This is unification, and the substitution
is called a unifier of p(t1,...,t,) and p(¢),...,t,). -

I said “a unifier” because many unifications are possible. For example, a
unifier of p(X) and p(Y) is obtained by substituting f(a, Z) for both X and
Y. Another unifier is obtained by replacing X and Y with c¢. Still another is
obtained by substituting X for Y. The last unification is “more general” be-
cause the first two can be obtained by a further substitution for the variable
~ X in the last substitution—either f(a, Z) or ¢, respectively. The goal of uni-
fication is to obtain a “most general” unifier; that is, a unifier from which all
others can be obtained by further substitutions. A priori, it’s not clear that
a most general unifier exists. .

There are various ways of describing an algorithm for finding the most
general unifier. The most easily understood involves depth-first traversal of
ordered trees associated with predicates. The trees are called formation trees.
The description of the tree construction parallels Definition 3.4 (p.106) and
part of Definition 3.5. Here’s the definition and the tree construction in par-
allel.

The terms in £ and the associated formation trees are defined recursively
as follows.:

D1. Every variable as well as every constant is a term.
T1. A vertex labeled with any variable or constant is a formation tree.

D2. If ty,...,t, are terms and f is a function that takes n arguments, then
f(t1,...,ty) is a term.
T2. Ifty,...,t, are terms and f is a function that takes n arguments, then the

ordered tree whose root is labeled f and whose ith child is the formation
tree for t; 1s a formation tree.

Finally, we have the atomic formulas:

4.8 Fz'fst-Order Predicate Calculus 1549

Flob X0), F(Xns (@) (KX F(X)) p(Y,0(Z,0), W)

f p p
PN I — T~
g f *xX X f *Y g w

/N /\ i /' \
b X1 X9 h X 4 @

a

Figure 4.1 Some formation trees. Above each tree is the term or atomic formula
to which it corresponds. The asterisks are explained in Example 4.7.

D3. If t1,...,t, are terms and p is a predicate that takes n-arguments, then
p(t1,...,t,) is an atomic formula.
T3. If t;,...,t, are terms and p is a predicate that takes n arguments, then

the ordered tree whose root is labeled p and whose ith child is the forma-
tion tree for t; is a formation tree.
Figure 4.1 shows some formation trees.
Notice that, since a variable takes no arguments, it can occur only as the
leaf of a formation tree. Here’s the algorithm for finding a most general unifier.

{

Algorithm 4.4 Most General Unifier

Let Ty and T be two formation trees. The algorithm terminates with
both trees displaying the result of the most general unifier, or it reports
failure. Start at the root of each tree and carry out a depth-first search
and substitution as described below until both trees have been traversed.

1. Compare: Let L; be the label at the present vertex in T;. If Lg = L1,
go to Step 3.

2. Substitute: Let U; be the formation tree rooted at the current ver-
tex in T;. Since the roots Ly and Lj are not equal, there are three
possibilities:

(a) Neither Ly nor L; is a variable: In this case, stop with failure.

(b) One of L; is a variable V and V appears in U;_;. In this case,
stop with failure. :

(c) One of L; is a variable V and V does not appear in U;_;. In
this case, replace all leaves labeled V with a copy of U;_;. (This
substitutes U;_; for V)

3. Advance: If there are no more vertices in the depth-first search, ter-
minate with success. Otherwise, move to the next depth-first vertex
in both 7y and 77 and go to Step 1.

The subscript 1 —1 is used to refer to the tree other than T;. This works since
(i=0—-(1-i=1and (t:=1)— (1 -i=0).

160 Chapter 4 The Theory of Resolution

¥4 D Y4 p
RN — 1T~ — 1T
XX f X *x¢ W g g *f g g W
: | /7 \ /N /N | /N /\
X Z a Z a6 7 a g Z a 7 a
/' \
7z a

Figure 4.2 Application of the unification algorithm. See Example 4.7 for details.

Example 4.7 Unification

Let’s see how the algorithm works on the rightmost trees in Figure 4.1. The
asterisks indicate where the first disagreement occurs in the depth-first search.
In this case, Ly and L, are both variables so we can replace X with Y or Y with
X. Choosing the former leads to the two trees on the left side of F igure 4.2.

Again, the vertices where disagreement occurs are marked by an asterisk.
Now Lo = X and L; = g, so we must substitute U; for X everywhere. The
results are shown on the right side of Figure 4.2. Finally, the last substitution
that the algorithm requires is replacing W with f (9(Z,a)). The final result is

p(g(Z, a),g(Z,:b),f(g(Z,a))).

Now let’s make a slight change in the original T}. Replace the variable
W with X. In this case, the algorithm reaches its third disagreement at f in
Ty and g in Ty (g instead of X because an earlier substitution for X). As a
result, it reports failure because no substitution for a variable will change the
function symbols.

Let’s make a different change. Replace W with Z in 7). The third dis-
agreement is at the same place as before, but now there is a Z in Ty and U,
contains Z because Uy corresponds to f(g(Z, A)). The algorithm ends in fail-
ure. Why can’t we simply substitute f(g(Z, A)) for Z everywhere? If we were
to do so, we would have to make the substitution in f(g(Z, a)) as well, and this
would lead to an infinite repetition: f(g(Z,a)) becomes f(g(f(g(Z, a)), a)),
which becomes f(g(f(g(f(9(Z,a)), a)),a)), and so on. It’s a bit easier to see
what’s happening by looking at X and h(X). Repeated substitution leads to
h(h(h(...))), where the ellipsis indicates an infinite sequence of nested h’s. M

Theorem 4.5 Most General Unifier

Algorithm 4.4 always terminates. If it terminates in failure, no unification
is possible. If it produces a unification, it is a most general one; that 18,
every other unification is obtainable from that produced by the algorithm
by substituting for the variables it contains.

4.8 First-Order Predicate Calculus 161

Since the algorithm starts with two trees, which are finite, it may seem that
termination is obvious. This is not the case. Conceivably, the process of substi-
tution could result in larger and larger trees such that the depth-first traversal
is never finished. In fact, if we forget to include (b) in the algorithm, the al-
gorithm can go on forever as described at the end of the previous example.
This is what most (perhaps all) implementations of Prolog actually do.

Proof: How is termination proved? Very simply. At the start, the number of
variables in the two formation trees is finite since the entire trees are finite.
Because of (b) in the algorithm, each substitution eliminates all occurrences of
a variable. Hence the number of substitutions done by the algorithm is finite.
Consequently, the trees are changed only a finite number of times and so do
not grow without bound.

Any disagreement that is found by the algorithm must be eliminated if a
unification is to be found. The only substitutions that are allowed are those
replacing a variable with a term. This explains why there must be a failure
when (a) occurs in the algorithm. Case (b) must lead to failure because it
leads to an infinite chain of substitutions as discussed near the end of the
previous example.

This leaves (c). The substitution made there is the least possible to cre-
ate unification. Mightn’t a more restrictive substitution somehow allow more
freedom elsewhere in the trees? Perhaps you intuitively see that this is not the
case—and perhaps you don’t, in which case some experimentation will proba-
bly convince you. To give a proof up to present-day standards of mathematical
rigor, we’d have to spend time looking carefully at properties of substitutions.
We won’t do that, so the proof is not quite complete. W

Aside. The entire discussion of unification could have been formulated with several
atomic formulas in the predicate p rather than just two. You should find it relatively
easy to adapt the algorithm.

Resolution

To prepare for resolution, we first put formulas in clausal form, ignoring the
location of quantifiers. Then we use Skolemization to eliminate existential
quantifiers and place universal quantifiers on the leftmost side of the formula.
At this point, we’re ready to obtain a contradiction by means of resolution.
The process is the same as that for propositional calculus, except that we
must make use of unification. We select two clauses, one containing an atomic

formula p(t1,...,t,) and another containing the negation of the predicate,
say —p(t},...,t,). A most general unifier is found. The literals in the two
clauses, with the exception of p(ti,...,ts) and =p(t,...,1,), are placed in a

cvnwwr alassmn and tha onhotitutiane ~f tha maet conaral ninifier are annhied

