Propositional Logic	
First-Order Logic	
	1 handout: slides

Pro	positional	OPIC
	positional	

- Logic
- The PSSH
- Semantics
- Reasoning
- Refutation
- CNF
- Break

Propositional Logic

Wheeler Ruml (UNH)

Lecture 8, CS 730 – 2 / 15

Propositional Logic

Logic

The PSSH
Semantics
Reasoning
Refutation
CNF
Break

First-Order Logic

A logic is a formal system:

- syntax: defines sentences
- semantics: relation to world
- inference rules: reaching new conclusions

three layers: proof, models, reality

soundness, completeness

flexible, general, principled (Advice Taker, 1958)

Empirical Philosophy = Science

opositional Logic	The Physica	
Logic	symbol	
The PSSH		
Semantics	general	
Reasoning		
Refutation	where a	
CNF		
Break	Symbol is	
est-Order Logic	- J	
	others t	
	and	
	Designation	

Pr

Fir

e	Physical Symbol System Hypothesis: A physical
	symbol system has the necessary and sufficient means for
	general intelligent action. (Newell and Simon)

ymbol is a designating pattern that can be combined with others to form another designating pattern

Designation means standing in for something in the world

Semantics

Pro

Fir

Depositional Logic Logic The PSSH Semantics Reasoning Refutation	Interpretation each propositi Model: interp Meaning: valu Entailment (F
Break	
<u>st-Order Logic</u>	

terpretation: possible world = state of affairs = truth value for ach proposition lodel: interpretation in which sentence is true

Meaning: values across all models

Entailment (\models): α true in all models of KB

- Logic
- The PSSH
- Semantics
- Reasoning
- Refutation
- CNF
- Break

computing entailment soundness, completeness modus ponens, resolution

 $\alpha \models \beta \text{ iff } \alpha \leftarrow \beta \text{ is valid}$

determining validity/tautology is co-NP-complete (easy to test proof of no)

therefore, verification that $\boldsymbol{\alpha}$ is not entailed is polytime

 $\alpha \models \beta$ iff $\alpha \land \neg \beta$ is unsatisfiable determining satisfiability is NP-complete (easy to test proof of yes)

Propositional Logic
Logic
■ The PSSH
Semantics
Reasoning
Refutation
■ CNF
Break
First-Order Logic

Given KB, is α entailed?

Wheeler Ruml (UNH)

Pro	positional	Logic
1 10	positional	LOgic

- Logic
- The PSSH
- Semantics
- Reasoning
- Refutation
- CNF
- Break

Given KB, is α entailed? (Is it true in all models of the KB?)

Resolution Refutation Proofs

Pro	positional	Logic
	o o o i ci o i i a i	

- Logic
- The PSSH
- Semantics
- Reasoning
- Refutation
- CNF
- Break

First-Order Logic

Given KB, is α entailed? (Is it true in all models of the KB?) Is KB $\wedge \neg \alpha$ satisfiable?

Resolution Refutation Proofs

Pro	positional	Logic

- Logic
- The PSSH
- Semantics
- Reasoning
- Refutation
- CNF
- Break
- First-Order Logic

Given KB, is α entailed? (Is it true in all models of the KB?) Is KB $\wedge \neg \alpha$ satisfiable?

Resolution is refutation complete.

Conversion to Conjunctive Normal Form

Propositional Logic

- Logic
- The PSSH
- Semantics
- Reasoning
- Refutation
- CNF
- Break

First-Order Logic

- 1. eliminate \leftrightarrow
- 2. eliminate \rightarrow
- 3. move \neg inward: $\neg \neg x$, $\neg(x \land y)$, , $\neg(x \lor y)$
- 4. distribute $\lor: x \lor (y \land z)$

Propositional Logic

- Logic
- The PSSH
- Semantics
- Reasoning
- $\blacksquare Refutation$
- CNF
- Break
- First-Order Logic

asst 2

office hours: Mon or Wed?

Propositional Logic

First-Order Logic

■ First-Order Logic

EOLQs

Gottlob Frege (1848-1925) PhD at 25

Begriffsschrift, 1879 (concept script)

"a formula language, modelled on that of arithmetic, of pure thought."

Wheeler Ruml (UNH)

Propositional Logic

First-Order Logic

■ First-Order Logic

EOLQs

 $\forall person \ ItIsRaining() \rightarrow IsWet(person)$

1. Things:

- constants: *John*, *Chair23*
- functions (thing → thing): MotherOf(John), SumOf(1,2)
- 2. Relations:
 - predicates (objects $\rightarrow T/F$): IsWet(John), IsSittingOn(MotherOf(John), Chair23)
- 3. Complex sentences:
 - connectives: IsWet(John) \vee IsSittingOn(MotherOf(John),Chair23)
 - quantifiers and variables: ∀personIsWet(person)..., ∃person...

Propositional Logic

First-Order Logic

■ EOLQs

- 1. constants: objects
- 2. predicates: relations between objects
- 3. variables
- 4. quantifiers
- 5. functions
- 6. connectives

Propositional Logic

First-Order Logic
First-Order Logic
EOLQs

 $\forall person \quad (ItIsRaining() \land \neg \exists umbrella \ Holding(person, umbrella))$ IsWet(person)

John loves Mary.

All crows are black.

Dolphin are mammals that live in the water.

Mary likes the color of one of John's ties.

EOLQs

Propositional Logic	
First-Order Logic	
■ First-Order Logic	
EOLQs	

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out. *Thanks!*