You think you know when you can learn, are more sure when you can write, even more when you can teach, but certain when you can program.
Adversarial Search

- Problems
- Different!
- Minimax
- Tic-tac-toe
- Improvements
- Break
- α-β Pruning
- α-β Pseudo-code
- Why α-β?
- Progress
- EOLQs

Adversarial Search
Observability: complete, partial, hidden
State: discrete, continuous
Actions: deterministic, stochastic, discrete, continuous
Nature: static, deterministic, stochastic
Interaction: one decision, sequential
Time: static/off-line, on-line, discrete, continuous
Percepts: discrete, continuous, uncertain
Others: solo, cooperative, competitive
Multi-agent is Different

■ Minimax
■ Tic-tac-toe
■ Improvements
■ Break
■ α-β Pruning
■ α-β Pseudo-code
■ Why α-β?
■ Progress
■ EOLQs

Adversarial Search

■ Problems
■ Different!

Shortest-path (M&C, vacuum, tile puzzle)
◆ want least-cost path to goal at unknown depth

Decisions with an adversary (chess, tic-tac-toe)
◆ adversary might prevent path to best goal
◆ want best assured outcome assuming rational opponent
◆ irrational opponent can only be worse
Adversarial Search: Minimax

Each *ply* corresponds to half a *move*. Terminal states are labeled with value.

incorrect version by Zermelo (1912)
full treatment by von Neumann and Morgenstern (1944)

Can also bound depth and use a *static evaluation function* on non-terminal states.
Evaluation for Tic-tac-toe

A 3-length is a complete row, column, or diagonal.

\[
\text{value of position} = \begin{cases}
\infty & \text{if win for me}, \\
-\infty & \text{if a win for you}, \\
\# \text{3-lengths open for me} - \# \text{3-lengths open for you} & \text{otherwise}
\end{cases}
\]
Tic-tac-toe: two-ply search

Fig. 3.8 Minimax applied to tic-tac-toe (stage 1).
Tic-tac-toe: second move

Fig. 3.9 Minimax applied to tic-tac-toe (stage 2).
Tic-tac-toe: third move

Adversarial Search
- Problems
- Different!
- Minimax
- Tic-tac-toe
 - Improvements
 - Break
 - α-β Pruning
 - α-β Pseudo-code
 - Why α-β?
 - Progress
 - EOLQs

Fig. 3.10 Minimax applied to tic-tac-toe (stage 3).
Improving the Search

<table>
<thead>
<tr>
<th>Adversarial Search</th>
<th>Improvements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Problems</td>
<td>partial expansion, SEF</td>
</tr>
<tr>
<td>Different!</td>
<td>symmetry (‘transposition tables’)</td>
</tr>
<tr>
<td>Minimax</td>
<td>search more ply as we have time (De Groot figure)</td>
</tr>
<tr>
<td>Tic-tac-toe</td>
<td>avoid unnecessary evaluations</td>
</tr>
</tbody>
</table>

- Break
- $\alpha - \beta$ Pruning
- $\alpha - \beta$ Pseudo-code
- Why $\alpha - \beta$?
- Progress
- EOLQs
Break

- asst 3
- asst 4
- projects! talk with me well before break
Which Values are Necessary?

Adversarial Search
- Problems
- Different!
- Minimax
- Tic-tac-toe
- Improvements

Break
- α-β Pruning
- α-β Pseudo-code
- Why α-β?
- Progress
- EOLQs
α-β Pruning

- **α** best outcome Max can force at previous decision on this path (init to $-\infty$)
- **β** best outcome Min can force at previous decision on this path (init to ∞)

α and β values are copied down the tree (but not up). Minmax values are passed up the tree, as usual.

Max-value (state, α, β):
when depth-cutoff (state), return SEF(state)
for each child of state
\[
\alpha \leftarrow \max(\alpha, \text{Min-value (child, } \alpha, \beta))
\]
when $\alpha \geq \beta$, return α
return α

Min-value (state, α, β):
when depth-cutoff (state), return SEF(state)
for each child of state
\[
\beta \leftarrow \min(\beta, \text{Max-value (child, } \alpha, \beta))
\]
when $\beta \leq \alpha$, return β
return β
Fig. 3.12 An example illustrating the alpha-beta search procedure.
Why $\alpha-\beta$?

Time complexity of $\alpha-\beta$ is about $O(b^{d/2})$
Progress on Games

Computers best: chess, checkers, backgammon, Scrabble, Jeopardy, Go
Computers competitive: bridge, crosswords, poker, StarCraft
Computers amateur: soccer?
Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!