

Control

Control

- Problems
- Control
- MPC
- Break
- P Control
- PD Control
- PID Control
- $\blacksquare Bisection Search$
- See Also
- EOLQs

Control

Planning Problems

Control
Problems
Control
■ MPC
Break
P Control
PD Control
PID Control
Bisection Search
See Also
EOLQs

Observability: complete, partial, hidden State: discrete, continuous Actions: deterministic, stochastic, discrete, continuous Nature: static, deterministic, stochastic Interaction: one decision, sequential Time: static/off-line, on-line, discrete, continuous Percepts: discrete, continuous, uncertain Others: solo, cooperative, competitive

Control

Control

Problems

- Control
- MPC
- Break
- P Control
- PD Control
- PID Control
- Bisection Search
- See Also
- EOLQs

low-level planning

- stochastic effects: policy, 'control law'
- continuous state: how to represent?

Control
Problems
Control
MPC
Break
P Control
PD Control
PID Control
Bisection Search
■ See Also
EOLQs

used with 'receeding horizon' (pprox real-time search)

simulate a bunch of controls (near nominal), pick best!

or steer to a bunch of states (near nominal), pick best!

flexible, dangerous

Break

Control

- ProblemsControl
- MPC
- Break
- P Control
- PD Control
- PID Control
- $\blacksquare Bisection Search$
- See Also
- EOLQs

- asst3
- projects
- wildcard class

P Control

Control

- Problems
- Control
- MPC
- Break
- P Control
- PD Control
- PID Control
- $\blacksquare Bisection Search$
- See Also
- EOLQs

$$u = K_P(x_r - \hat{x})$$

responsiveness vs smoothness

- = spring model
- allows persistent error!
- unstable with inertia!

PD Control

Control

- Problems
- Control
- MPC
- Break
- P Control
- PD Control
- PID Control
- Bisection Search
- See Also
- EOLQs

$$u = K_P(x_r - \hat{x}) + K_D \frac{d(x_r - \hat{x})}{dt}$$

dampen correction if error is changing a lot = dampened spring model

does nothing if persistent error is constant!

PID Control

Control

ProblemsControl

- MPC
- Break
- P Control

■ PD Control

PID Control

- Bisection Search
- See Also
- EOLQs

$$u = K_P(x_r - \hat{x}) + K_I \int (x_r - \hat{x}) dt + K_D \frac{d(x_r - \hat{x})}{dt}$$

removes any persistent error however, 'wind-up'

widely used. not optimal or necessarily stable.

tune by hand, or Thrun says coordinate-wise bisection search

Bisection Search

Control

Problems

- MPC
- Break
- P Control
- PD Control
- PID Control
- Bisection Search
- See Also
- EOLQs

given f and initial guesses l and r

- 1. bracket a local minimum
 - (a) try guess m in middle
 - (b) if m smallest, done! (local min between l and r)
 - (c) if l smallest, $r \leftarrow m$, $m \leftarrow l$ and move l left

move l by at least original r - l (double interval)

- (d) if r smallest, $m \leftarrow r$ and move r right
- 2. refine estimate
 - (a) try lm between l and m.
 - (b) if smaller than $m, r \leftarrow m$ and $m \leftarrow lm$
 - (c) otherwise, try mr between m and r.
 - (d) if smaller than m, $l \leftarrow m$ and $m \leftarrow mr$
 - (e) otherwise m is smallest, $l \leftarrow lm$ and $r \leftarrow mr$
 - (f) until range small or values close

See Also

- ProblemsControl
- Break
- P Control
- PD Control
- PID Control
- Bisection Search
- See Also
- EOLQs

optimal control: eg, Linear-Quadratic-Gaussian (LQG) discrete control: eg, Markov decision processes state estimation aka filtering: eg, Kalman filter, particle filter

EOLQs

Control

- Problems
- Control
- MPC
- Break
- P Control
- PD Control
- PID Control
- Bisection Search
- See Also
- EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out. *Thanks!*