CSPs Combinatorial Optimization Adversarial Search

1 handout: slides 730W blog entries were due

You think you know when you can learn, are more sure when you can write, even more when you can teach, but certain when you can program.

Lecture 4, CS 730 – 1 / 22

CSPs

Combinatorial Optimization

CSPs

- Other Problems
- Types of Problems
- 'Heuristics'
- Example Results
- MAC
- Other Algorithms
- Break
- Combinatorial Optimization
- Adversarial Search

Constraint Satisfaction Problems

Types of Search Problems

|--|

- Other Problems
- Types of Problems
- 'Heuristics'
- Example Results
- MAC
- Other Algorithms
- Break
- Combinatorial Optimization
- Adversarial Search

- Shortest-path (vacuum, tile puzzle, M&C)
 - given operators and their costs
 - want least-cost path to a goal
 - goal depth/cost unknown
- Constraint satisfaction (map coloring, *n*-queens)
 - any goal is fine
 - fixed depth
 - explicit constraints on partial solutions

- Other Problems
- Types of Problems
- 'Heuristics'
- Example Results
- MAC
- Other Algorithms

Break

Combinatorial Optimization

Adversarial Search

Variable choice: choose most constrained variable (smallest domain)

want to keep tree small, failing quickly

Value choice: try least constraining value first (fewest removals)

might as well succeed sooner if possible

Example Results

CSPs		BT	FC	FC+MCV
 Other Problems Types of Problems 	USA	> 1 M	2K	60
 'Heuristics' 	n-Queens	>40M	>40M	820K
 Example Results MAC 	Zebra	3.9M	35K	500
Other Algorithms	Random 1	420K	26K	2K
 Break Combinatorial Optimization 	Random 2	940K	77K	15K

CSPs

- Other Problems
- Types of Problems
- 'Heuristics'
- Example Results
- MAC
- Other Algorithms
- Break

Combinatorial Optimization

Adversarial Search

Ensure every value for x has a legal value in all neighbors y. If one doesn't, remove it and ensure consistency of all y.

CSPs

```
Other Problems
```

■ Types of Problems

```
'Heuristics'
```

Example Results

■ MAC

Other Algorithms

Break

Combinatorial Optimization

```
Ensure every value for x has a legal value in all neighbors y. If one doesn't, remove it and ensure consistency of all y.
```

```
while Q is not empty
  (x,y) \leftarrow \mathsf{pop}\ Q
  if revised(x, y) then
     if x's domain is now empty, return failure
     for every other neighbor z of x
       push (z, x) on Q
revise(x, y)
revised← false
foreach v in x's domain
  if no value in domain of y is compatible with v
     remove v from x's domain
     revised← true
return revised
```

Other Algorithms for CSPs

CSPs

- Other Problems
- Types of Problems
- 'Heuristics'
- Example Results

■ MAC

- Other Algorithms
- Break

Combinatorial Optimization

Adversarial Search

- (Conflict-directed) Backjumping
- Dynamic backtracking
- Randomized restarting

Course projects!

Break

CSPs

- \blacksquare Other Problems
- Types of Problems
- 'Heuristics'
- Example Results
- MAC
- Other Algorithms
- Break

Combinatorial Optimization

Adversarial Search

what is a course project? asst 1 going out on Wed

Combinatorial Optimization

- Types of Problems
- Hill-Climbing

Adversarial Search

Combinatorial Optimization

Combinatorial Optimization

- Types of Problems
- Hill-Climbing

- Shortest-path (M&C, vacuum, tile puzzle)
 - want least-cost path to a goal
 - goal depth unknown
 - given operators and their costs
- Constraint satisfaction (map coloring, n-queens)
 - any goal is fine
 - maximum depth = number of variables
 - given explicit constraints on variables
- Combinatorial optimization (TSP, max-CSP)
 - want least-cost goal
 - maximum depth = number of variables
 - every leaf is a solution

Hill-Climbing

CSPs

Combinatorial Optimization

Types of Problems

■ Hill-Climbing

Adversarial Search

Sol \leftarrow some random solution (probably poor quality). Do *limit* times

New \leftarrow random **neighbor** of *Sol*.

If New better than Sol,

then $Sol \leftarrow New$.

Hill-Climbing

|--|

Combinatorial Optimization Types of Problems

■ Hill-Climbing

Adversarial Search

Sol \leftarrow some random solution (probably poor quality). Do *limit* times

```
New \leftarrow random neighbor of Sol.
```

```
If New better than Sol,
```

```
then Sol \leftarrow New.
```

Elaborations: best neighbor (aka gradient-descent) restarts simulated annealing population (GAs, 'go with the winners') CSPs

Combinatorial Optimization

Adversarial Search

■ Another Type

■ Minimax

■ Tic-tac-toe

■ Improvements

EOLQs

Adversarial Search

Wheeler Ruml (UNH)

Lecture 4, CS 730 – 13 / 22

CSPs

Combinatorial Optimization

- Another Type
- Minimax
- Tic-tac-toe
- Improvements
- EOLQs

- Shortest-path (M&C, vacuum, tile puzzle)
 - want least-cost path to goal at unkown depth
- Constraint satisfaction (map coloring, *n*-queens)
 - any goal that satisfies constraints (fixed depth)
- Combinatorial optimization (TSP, max-CSP)
 - want least-cost goal (fixed depth)
- Decisions with an adversary (chess, tic-tac-toe)
 - adversary might prevent path to best goal
 - want best assured outcome

Adversarial Search: Minimax

Combinatorial Optimization

Adversarial Search

Another Type

Minimax

■ Tic-tac-toe

Improvements

EOLQs

Each *ply* corresponds to half a *move*. Terminal states are labeled with value.

Can also bound depth and use a *static evaluation function* on non-terminal states.

Evaluation for Tic-tac-toe

CSPs

Combinatorial Optimization

Adversarial Search

Another Type

Minimax

■ Tic-tac-toe

Improvements

EOLQs

A 3-length is a complete row, column, or diagonal. value of position $= \infty$ if win for me, or $= -\infty$ if a win for you, otherwise = # 3-lengths open for me -# 3-lengths open for you

Tic-tac-toe: two-ply search

Fig. 3.8 Minimax applied to tic-tac-toe (stage 1).

Tic-tac-toe: second move

Fig. 3.10 Minimax applied to tic-tac-toe (stage 3).

Wheeler Ruml (

Improving the Search

CSPs

Combinatorial Optimization

- Adversarial Search
- Another Type
- Minimax
- Tic-tac-toe
- Improvements
- EOLQs

- partial expansion, SEF
 - symmetry ('transposition tables')
 - search more ply as we have time (De Groot figure)
- avoid unnecessary evaluations

EOLQs

CSPs

Combinatorial Optimization

- Adversarial Search
- Another Type
- Minimax
- Tic-tac-toe
- Improvements
- EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!