CS 730/730W/830: Intro AI

Heuristic Search

CSPs

1 handout: slides asst 1 milestone was due

EOLQs

Heuristic Search

Heuristic Search

- **■** Comparison
- Heuristics
- Other Algorithms
- Search Algorithms
- Take 2

CSPs

Heuristic Search

Comparison

Heuristic Search				
■ Comparison				
■ Heuristics				
■ Other Algorithms				
■ Search Algorithms				
■ Take 2				
CSPs				

Algorithm	Time	Space	Complete	Admissible
Depth-first	b^m	bm	If $m \ge d$	No
Breadth-first	b^d	b^d	Yes	if ops cost 1
Uniform-cost	b^d	b^d	Yes	Yes
IDDFS	b^d	bd	Yes	Yes
Greedy A*	depends	pprox time	$\begin{array}{c} {\rm depends} \\ {\rm if} \ h \ {\rm adm.} \end{array}$	${\sf No}$ if h adm.

branching factor b maximum depth m solution depth d

Heuristics

Heuristic Search

- Comparison
- Heuristics
- Other Algorithms
- Search Algorithms
- Take 2

CSPs

Simplified problem must give lower bound on original!

- 1. Relaxation: fewer and/or weaker constraints
 - Sometime efficient closed form
- 2. Abstraction: simplify token identity
 - Smaller search space

Want highest value

■ If $h_1(n) \leq h_2(n)$ for all n, h_2 dominates h_1

Other Shortest-path Algorithms

Heuristic Search

- **■** Comparison
- Heuristics
- Other Algorithms
- Search Algorithms
- Take 2

CSPs

- IDA*
- SMA*, IE
- RBFS
- RTA*, LRTA*

Course projects!

Search Algorithms

Heuristic Search

- Comparison
- Heuristics
- Other Algorithms
- Search Algorithms
- Take 2

- Uninformed methods
 - ◆ Depth-first
 - ♦ Breadth-first
 - ♦ Uniform-cost
- Informed methods
 - ◆ Greedy
 - ◆ A*
- Bounding memory
 - Iterative deepening
 - ♦ Beam search

Search Algorithms, Take 2

Heuristic Search

- Comparison
- Heuristics
- Other Algorithms
- Search Algorithms
- Take 2

- Depth-first
 - ◆ Depth-first
- 'Best-first'
 - ♦ Breadth-first
 - ♦ Uniform-cost
 - ◆ Greedy
 - ◆ A*
- Bounding memory
 - Iterative deepening
 - ♦ Beam search

Heuristic Search

CSPs

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms
- **■** EOLQs

Constraint Satisfaction Problems

Some Other Search Problems

Heuristic Search

CSPs

■ Other Problems

- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms
- **■** EOLQs

Map coloring: Given a map of n countries and a set of k colors, color every country differently from its neighbors. n-queens: Given an $n \times n$ chessboard, arrange n queens so

What algorithm would you use?

that none is attacking another.

Types of Search Problems

Heuristic Search

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms
- **■** EOLQs

- Shortest-path (vacuum, tile puzzle, M&C)
 - given operators and their costs
 - want least-cost path to a goal
 - goal depth/cost unknown
- \blacksquare Constraint satisfaction (map coloring, n-queens)
 - any goal is fine
 - fixed depth
 - explicit constraints on partial solutions

Chronological Backtracking

Heuristic Search

CSPs

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- **■** MAC
- Other Algorithms
- **■** EOLQs

Do not expand any partial solution that violates a constraint.

Break

Heuristic Search

- Other Problems
- Types of Problems
- Backtracking
- Break
- Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms
- **■** EOLQs

- office hours
- asst 1
 - milestone:
 - you know it all now
 - don't forget: beauty, write-up
- blog entries due on Wednesdays, 8am, 400 words
- projects (Apr 2), UROP (Mar 1)

Forward Checking

Heuristic Search

CSPs

- Other Problems
- Types of Problems
- Backtracking
- Break
- Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms
- **■** EOLQs

When assigning a variable, remove the conflicting values for all connected variables. Backtrack on domain wipeout.

Arc consistency: for every value in the domain of x, there exists a value in the domain of y that satisfies all the constraints.

Heuristics for CSPs

Heuristic Search

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms
- **■** EOLQs

- Variable choice: choose most constrained variable (smallest domain)
 - want to keep tree small, failing quickly
- **Value choice:** try least constraining value first (fewest removals)
 - might as well succeed sooner if possible

Example Results

		C 1
Н	euristic	Search

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- Example Results
- MAC
- Other Algorithms
- **■** EOLQs

	ВТ	FC	FC+MCV
USA	> 1M	2K	60
n-Queens	>40M	>40M	820K
Zebra	3.9M	35K	500
Random 1	420K	26K	2K
Random 2	940K	77K	15K

Maintaining Arc Consistency

Heuristic Search

CSPs

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results

■ MAC

- Other Algorithms
- **■** EOLQs

Ensure every value for x has a legal value in all neighbors y. If one doesn't, remove it and ensure consistency of all y.

Maintaining Arc Consistency

Heuristic Search

CSPs

- **■** Other Problems
- Types of Problems
- Backtracking
- Break
- Forward Checking
- 'Heuristics'
- **■** Example Results

MAC

- Other Algorithms
- **■** EOLQs

Ensure every value for x has a legal value in all neighbors y. If one doesn't, remove it and ensure consistency of all y.

```
while Q is not empty (x,y) \leftarrow \operatorname{pop} Q if \operatorname{revised}(x,y) then if x's domain is now empty, return failure for every other neighbor z of x push (z,x) on Q
```

```
revise(x, y)
revised \leftarrow false
foreach v in x's domain
if no value in domain of y is compatible with v
remove v from x's domain
revised \leftarrow true
return revised
```

Other Algorithms for CSPs

Heuristic Search

CSPs

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- **■** MAC
- Other Algorithms
- **■** EOLQs

- (Conflict-directed) Backjumping
- Dynamic backtracking
- Randomized restarting

Course projects!

EOLQs

Heuristic Search

CSPs

- Other Problems
- Types of Problems
- Backtracking
- Break
- **■** Forward Checking
- 'Heuristics'
- **■** Example Results
- MAC
- Other Algorithms

■ EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out.

Thanks!