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The Alarm Domain

Bayesian Networks
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Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,

Earthquake, Alarm, JohnCalls, and M aryCalls, respectively.
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Bayes Nets Reminder

Bayesian Networks Bayes Net = joint probability distribution

m Example specifies independence:

B Enumeration

m Example P(Xi’Xi—la c e 7X1) — P(XZ’pa’rentS(XZ))

m Break

Particle Filters

joint:
HMMs n

Viterbi Decoding P(:Ul, . ,xn) = H P(CUi’pamntS(Xi))
=1

What is distribution of X given evidence e and unobserved Y'?
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Enumeration Over the Joint Distribution

What is distribution of X given evidence e and unobserved Y7

Bayesian Networks

m Example
B Reminder

B Enumeration

m Example

. Break P(e|X)P(X)
S e ks P(X‘e) - P(e)
HMMs — OzP(X, 6)
Viterbi Decodin
: - « Z P(X7 €, y)
Yy

o Z H P(V;|parents(V;))

Yy 1=1
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Example

Bayesian Networks

m Example

m Reminder P(B|j,m) = QZZHP Vi|parents(V;))

B Enumeration

-
m Break P(b|]’ m) — QZZP CL|b 6) (]|a’)P(m|a’)

Particle Filters

HMMs — aP ZP ZP (alb,e)P(jla)P(m|a)

Viterbi Decoding
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Break

Bayesian Networks m  Wed May 2: HMMs, ?

- E:nr?npir m  Mon May 7: special guest Scott Kiesel on robot planning

a Enumeration m  Wed May 9, 9-noon: project presentations

m  Thur May 10, 8am: paper drafts (optional for some)
. m Fri May 11, 10:30: exam 3 (N133)

LM m Tues May 15, 3pm: papers (one hardcopy + electronic PDF)

Viterbi Decoding
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Particle Filters

Particle Filters
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Monte Carlo Localization

Bayesian Networks S — Samples from prior
w <— uniform distribution

HMMs repeat forever:

Viterbi Decoding for each sample s; and weight w;,

s; <— sample from P(S}|s;)
w; < P(els;)
S < sample from S with P(s;) o< w;

+: nonparametric, scalable computation and accuracy, simple
—: high D, accurate sensors, kidnapping
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Hidden Markov Models
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Probabilistic Models

Bayesian Networks MDPs:

Particle Filters Naive Bayes:
HMMs k-Means:
Markov chain:

m The Model

Hidden Markov model:

Viterbi Decoding
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The Model

P(:Ut = ]) = ZP(LUt_l = Z)P(SBt = j|$t_1 = Z)

= The Model P(e; = k) ZP(azt =1i)P(e = k|z = 1)
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The Model

Bayesian Networks

Particle Filters P(th — ]) — ZP(th_l = Z)P(th = ]|th_1 p— Z)
HMMs '

B Models

Plee=k) = ) P(z=1)P(e=klz=1)

Viterbi Decoding
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Viterbi Decoding

Viterbi Decoding

Wheeler Ruml (UNH) Lecture 26, CS 730 - 13 / 16



Properties of HMMs

Bayesian Networks probability of a sequence multiplies forward in time
Particle Filters dynamic programming backward through time

HMMs

Viterbi Decoding

m The Model

® The Algorithm
m EOLQs

Wheeler Ruml (UNH) Lecture 26, CS 730 — 14 / 16



The Algorithm

Bayesian Networks given: transition model T'(s, s’)
Particle Filters SenSing mOdel S(S, 0)
HMMs .

observations o1, ..., 0T
Viterbi Decoding )
B The Model find: most prObable S1y...,8T
m EOLQs

initialize S x T matrix v with Os
V0,0 < 1
foreachtimet=0to T — 1
for each state s
for each new state s’
score < vg¢ - 1'(s,s") - S(s, 01)
if score > vy 441
Vg t41 < Score
best-parent(s’)« s
trace back from s with max vs 1
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EOLQs

What question didn't you get to ask today?

Bayesian Networks

Particle Filters m  What's still confusing?
HMMs m  What would you like to hear more about?
Viterbi Decoding . ] ]
® The Model Please write down your most pressing question about Al and put
® The Algorithm t . th b t
IT IN € DOX Oon your way Oout.
Thanks!
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