CS 730/830: Intro Al

Wheeler Ruml (UNH) Lecture 23, CS 730 -1 / 17



Bayesian Networks

Bayesian Networks

Wheeler Ruml (UNH) Lecture 23, CS 730 -2 / 17



Probabilistic Models

Bayesian Networks M DPS:

Naive Bayes:

B Example

B The Joint k-Means:

M Independence

B Example

M Break Representation: variables, connectives
Approx. Inference Inference: approximate, exact

Exact Inference
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The Alarm Domain

Bayesian Networks
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B Models . P
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Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,

Earthquake, Alarm, JohnCalls, and M aryCalls, respectively.
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The Full Joint Distribution

Bayesian Networks ultimate power: knowing the probability of every possible atomic

B Models event (combination of values)
B Example

B The Joint

M Independence

B Example
M Break

Approx. Inference

Exact Inference
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The Full Joint Distribution

ultimate power: knowing the probability of every possible atomic

Bayesian Networks

:Lflxoadr:;e event (combination of values)
::E“Xd:rz::ence simple inference via enumeration over the joint:
B Break what is distribution of X given evidence e and unobserved Y
Approx. Inference
Exact Inference P(X|e) = P(d;f()f))(X) = aP(X,e) = QZP(X’ e, y)
Y

Bayes Net = joint probability distribution
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The Magic of Independence

In general:

P(zy,...,zn) = P(xp|lrpn_1,...,21)P(xp_1,...,71)

B Independence
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The Magic of Independence

In general:

P(xy,...,xy) P(zp|lrp-1,. . 21)P(xp_1,...,21)

n
1 P(zilwizy, ... 21)
i=1

B Independence
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The Magic of Independence

In general:

Bayesian Networks
B Models

B Example
B The Joint P(xl’ e ’xn)

B Independence

B Example
M Break

P(z,|lzn_1,...,21)P(xp_1,...,71)

n
1 P(zilwizy, ... 21)
i=1

Approx. Inference

Exact Inference A Bayesian net specifies independence:

P(X;| X;—1,...,X1) = P(X;|parents(X;))
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The Magic of Independence

In general:

Bayesian Networks
B Models

B Example
B The Joint P(xl’ e ’xn)

M Independence

B Example
M Break

P(z,|lzn_1,...,21)P(xp_1,...,71)

n
1 P(zilwizy, ... 21)
i=1

Approx. Inference

Exact Inference A Bayesian net specifies independence:

P(X;| X;—1,...,X1) = P(X;|parents(X;))

So joint distribution can be computed as

n

P(xi,...,xp) = H P(x;|parents(X;))
i=1
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The Magic of Independence

Bayesian Networks
B Models

B Example

B The Joint

B Example

B Break

Approx. Inference

Exact Inference

In general:

P(zi,...,x5) P(z,|lzn_1,...,21)P(xp_1,...,71)

n
1 P(zilwizy, ... 21)
i=1

A Bayesian net specifies independence:
P(X;| X;—1,...,X1) = P(X;|parents(X;))

So joint distribution can be computed as

n

P(xi,...,xp) = H P(x;|parents(X;))
i=1

For n b-ary variables with p parents, that's nb? instead of ™!
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Example

B Example
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Break

WM asst 12
B project

B Break
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Approx. Inference

Approximate Inference
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Rejection Sampling

What is distribution of X given evidence e and unobserved Y7

Bayesian Networks

Approx. Inference

Draw worlds from the joint, rejecting those that do not match e.
B Likelihood Wting ] ] )
Look at distribution of X.

Exact Inference

sample values for variables, working top down
directly implements the semantics of the network

‘generative model’
each sample is linear time, but overall slow if e is unlikely
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Likelihood Weighting

What is distribution of X given evidence e and unobserved Y'?

Bayesian Networks

Approx. Inference
B Sampling

ChooseSample (¢)

Exact Inference

for each variable V; in topological order:
if (V; =wv;) € e then
w < w - P(v;|parents(v;))
else
v; < sample from P(V;|parents(V;))

(afterwards, normalize samples so all w’s sum to 1)

uses all samples, but needs lots of samples if e are late in ordering
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Exact Inference

Exact Inference in Bayesian Networks
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Enumeration Over the Joint Distribution

What is distribution of X given evidence e and unobserved Y7

Bayesian Networks

Approx. Inference

Exact Inference

B Enumeration

xample P(e| X )P(X
:\E/ar. Epl:m 1 P(X‘e) = (el ) ( )
M Var. Elim. 2 P(B)

B EOLQs _ OKP(X, 6)

= ozZP(X,e,y)

o Z H P(V;|parents(V;))

Yy 1=1
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Example

Bayesian Networks

P(j,m|B)P(B)

Approx. Inference P B . _
Exact Inference ( |]7 m) P(], m)
e — aP(B,jm)
B Var. Eim. 2 = a Z Z P(B,e,a,j,m)
W EOLQs
= O‘ZZ H P(V;|parents(V;))
a =1

P(blj,m) = aZZP P(alb,€)P(jla)P(mla)
= aP ZP ZP (alb,e)P(jla)P(m|a)

[draw tree]
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Variable Elimination

Bayesian Networks

Approx. Inference P(Blj)m) p— aP(B)ZP ZP a,lB 6 | ) (m’a)

Exact Inference

B Enumeration

B Example

: -
VT factors = tables = fyqrsused (dimensions).
BT eg: fa(A, B, E), fu(A)

multiplying factors: table with union of variables
summing reduces table
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Variable Elimination

eliminating variables: eg P(J|b)

Bayesian Networks

Approx. Inference

Exact Inference P(J|b) = ZP ZP(a|b, e)P(J|a) ZP(m|a)

B Enumeration
B Example
B Var. Elim. 1

W EOLQs all vars not ancestor of query or evidence are irrelevant!
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EOLQs

Bayesian Networks B \What question didn't you get to ask today?
Approx. Inference B What's still confusing?
Exact Inference B \What would you like to hear more about?

B Enumeration

oomee Please write down your most pressing question about Al and put
M Var. Elim. 2 it in the box on your way out.
Thanks!
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