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supervised learning: learning a function or a density
unsupervised learning: explaining data
filtering: estimating state, particularly under change
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type A coins have P(heads) = 0.5
type B coins have P(heads) = 0.6
type C coins have P(heads) = 0.9

A drawer contains two As and one B and one C. You reach into
the drawer and randomly pick a coin. What is the probability
that the coin is each type?

You flip the coin and get heads. Now what is the probability that
the coin is each type?

You flip the coin again and get heads again. Now what is the
probability that the coin is each type?
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P (s|o) =
P (o|s)P (s)

P (o)
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P (s|o) =
P (o|s)P (s)

P (o)

P (s′|s, u, o′) =
P (o′|s, u, s′)P (s, u, s′)

P (s, u, o′)
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P (s|o) =
P (o|s)P (s)

P (o)

P (s′|s, u, o′) =
P (o′|s, u, s′)P (s, u, s′)

P (s, u, o′)

P (s′|s, u, o′) = αP (o′|s′)P (s′|s, u)
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S ← samples from prior
w ← uniform distribution
repeat forever:

for each sample si and weight wi,
si ← sample from P (S′

i|si, u)
wi ← P (o|si)

S ← sample from S with P (si) ∝ wi

+: nonparametric, scalable computation and accuracy, simple
−: kidnapping, high D
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■ asst 11
■ asst 12
■ Fri May 2 noon-2pm: poster presentations
■ Mon May 12 2pm: final papers
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Naive Bayes:
GMM:
Markov chain:
MDPs:
Hidden Markov model:
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P (xt = j) =
∑

i

P (xt−1 = i)P (xt = j|xt−1 = i)

P (ot = k) =
∑

i

P (xt = i)P (o = k|x = i)
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P (xt = j) =
∑

i

P (xt−1 = i)P (xt = j|xt−1 = i)

P (ot = k) =
∑

i

P (xt = i)P (o = k|x = i)

More concisely:

P (xt) =
∑

xt−1

P (xt−1)P (xt|xt−1)

P (ot) =
∑

xt

P (xt)P (o|x)
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probability of a sequence multiplies forward in time
dynamic programming backward through time
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given: transition model T (s, s′)
sensing model S(s, o)
observations o1, . . . , oT

find: most probable s1, . . . , sT

initialize S × T matrix v with 0s
v0,0 ← 1
for each time t = 0 to T − 1

for each state s

for each new state s′

score ← vs,t · T (s, s
′) · S(s′, ot)

if score > vs′,t+1

vs′,t+1 ← score
best-parent(s′)← s

trace back from s with max vs,T
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■ What question didn’t you get to ask today?
■ What’s still confusing?
■ What would you like to hear more about?

Please write down your most pressing question about AI and put
it in the box on your way out.
Thanks!
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