CS 730/730W/830: Intro AI

Unsuperv. Learning

Bayesian Networks

1 handout: slides730W blog entries were due

Unsuperv. Learning

- Overview
- \blacksquare k-Means
- An Algorithm
- EM
- Basic Clustering
- Break

Bayesian Networks

Unsupervised Learning

Overview

Unsuperv. Learning

Overview

k-Means

An Algorithm

EM

Basic Clustering

Break

Bayesian Networks

modeling = predicting = understanding clustering

k-Means Clustering

Unsuperv. Learning

Overview

$\blacksquare k$ -Means

- An Algorithm
- EM
- Basic Clustering
- Break

Bayesian Networks

Naive Bayes model: choose class, generate attributes independently

mixture model: choose class, generate data

$$P(x|\theta) = \sum_{k} P(C = k|\theta_k) P(x|C = k, \theta_k)$$

eg, for mixture of Gaussians,

$$P(x|C=k,\mu_k,\sigma_k^2) = \frac{1}{\sqrt{2\sigma_k^2\pi}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$

An Algorithm

Unsuperv. Learning

- Overview
- $\blacksquare k$ -Means
- An Algorithm
- EM
- Basic Clustering
- Break

Bayesian Networks

Means represent the center of a cluster/class Values for the means are the model Model changes based on the classes assigned to the data

init the k means somehow repeat until cluster assignments do not change:

Assign each data point to the mean nearest to it Calculate new means for the data assigned to each cluster

An Algorithm

Unsuperv. Learning

Overview

 \blacksquare k-Means

■ An Algorithm

■ EM

■ Basic Clustering

■ Break

Bayesian Networks

Means represent the center of a cluster/class
Values for the means are the model

Model changes based on the classes assigned to the data

init the k means somehow repeat until cluster assignments do not change:

Assign each data point to the mean nearest to it Calculate new means for the data assigned to each cluster

Example

An Algorithm

Unsuperv. Learning

Overview

 $\blacksquare k$ -Means

■ An Algorithm

■ EM

■ Basic Clustering

■ Break

Bayesian Networks

Means represent the center of a cluster/class Values for the means are the model Model changes based on the classes assigned to the data

init the k means somehow repeat until cluster assignments do not change:

Assign each data point to the mean nearest to it Calculate new means for the data assigned to each cluster

Example

Is the classification optimal? What is it optimizing?

Expectation-Maximization

Unsuperv. Learning

- Overview
- \blacksquare k-Means
- An Algorithm

EM

- Basic Clustering
- Break

Bayesian Networks

model parameters θ (eg, $\mu, \sigma^2, P(C=k)$) observed variables x_j hidden variables C_j

init the θ_k somehow repeat until done:

E: compute expected values of hidden vars: $P(C_j=k|x_j,\theta_k)$ eg by $\alpha P(C=k)P(x_j|C=k,\theta_k)$

M: maximize data likelihood using current estimates: θ_k , with each x_j weighted by $P(C_j = k|x_j)$, eg by

Expectation-Maximization

Unsuperv. Learning

- Overview
- \blacksquare k-Means
- An Algorithm

EM

- Basic Clustering
- Break

Bayesian Networks

model parameters θ (eg, $\mu, \sigma^2, P(C = k)$) observed variables x_j hidden variables C_j

init the θ_k somehow repeat until done:

E: compute expected values of hidden vars: $P(C_j=k|x_j,\theta_k)$ eg by $\alpha P(C=k)P(x_j|C=k,\theta_k)$

M: maximize data likelihood using current estimates: θ_k , with each x_i weighted by $P(C_i = k|x_i)$, eg by

$$\theta \leftarrow \underset{\theta}{\operatorname{argmax}} \sum_{z} P(Z = z | x, \theta) P(x, Z = z | \theta)$$

greedy increase of data likelihood

Expectation-Maximization

Unsuperv. Learning ■ Overview ■ k-Means ■ An Algorithm ■ EM ■ Basic Clustering ■ Break Bayesian Networks

Features

- Probabilistic clustering
- Explicit model
- Locally optimal

Issues

- Number of classes (means, Gaussians, etc.)
- Local maxima

Agglomerative Clustering

Unsuperv. Learning

- Overview
- \blacksquare k-Means
- An Algorithm
- EM
- Basic Clustering
- Break
- Bayesian Networks

dendrogram

 $O(n^2)$ vs O(kn)

AutoClass

Break

Unsuperv. Learning

- Overview
- \blacksquare k-Means
- An Algorithm
- EM
- Basic Clustering
- Break
- Bayesian Networks

- asst 5
- exam 2
- projects

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- EOLQs

Bayesian Networks

The Alarm Domain

Unsuperv. Learning

Bayesian Networks

- Example
- Models
- The Joint
- Independence
- EOLQs

Figure 14.2 A typical Bayesian network, showing both the topology and the conditional probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary, Earthquake, Alarm, JohnCalls, and MaryCalls, respectively.

Probabilistic Models

Unsuperv. Learning

Bayesian Networks

Example

Models

The Joint
Independence

EOLQs

MDPs:

Naive Bayes:

k-Means:

Representation: variables, connectives

Inference: approximate, exact

The Full Joint Distribution

ultimate power: knowing the probability of every possible atomic event (combination of values)

The Full Joint Distribution

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- **■** EOLQs

ultimate power: knowing the probability of every possible atomic event (combination of values)

simple inference via enumeration over the joint:

what is distribution of X given evidence e and unobserved Y

$$P(X|e) = \frac{P(e|X)P(X)}{P(e)} = \alpha P(X,e) = \alpha \sum_{y} P(X,e,y)$$

Bayes Net = joint probability distribution

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- EOLQs

In general:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- **■** EOLQs

In general:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$
$$= \prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1)$$

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- EOLQs

In general:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$
$$= \prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1)$$

A Bayesian net specifies independence:

$$P(X_i|X_{i-1},\ldots,X_1) = P(X_i|parents(X_i))$$

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- EOLQs

In general:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$
$$= \prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1)$$

A Bayesian net specifies independence:

$$P(X_i|X_{i-1},\ldots,X_1) = P(X_i|parents(X_i))$$

So we get:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i|parents(X_i))$$

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- EOLQs

In general:

$$P(x_1, \dots, x_n) = P(x_n | x_{n-1}, \dots, x_1) P(x_{n-1}, \dots, x_1)$$
$$= \prod_{i=1}^n P(x_i | x_{i-1}, \dots, x_1)$$

A Bayesian net specifies independence:

$$P(X_i|X_{i-1},\ldots,X_1) = P(X_i|parents(X_i))$$

So we get:

$$P(x_1, \dots, x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

For n b-ary variables with p parents, that's nb^p instead of b^n !

EOLQs

Unsuperv. Learning

Bayesian Networks

- **■** Example
- Models
- The Joint
- Independence
- EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!