CS 730/730wW/830: Intro Al

1 handout: slides
730W blog entries were due
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Unsuperv. Learning

Unsupervised Learning
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Overview

modeling = predicting = understanding
m Overview Clustering
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k-Means Clustering

Unsuperv. Learning Naive Bayes model: choose class, generate attributes

m Overview independently

® An Algorithm

m EM

m Basic Clustering
m Break

Bayesian Networks x‘@ ZP C k’@k) (QZ"C == ]{, Hk)

mixture model: choose class, generate data

eg, for mixture of Gaussians,

1 ( — pg)’?

———exp | — 5
\/ 20']%71' 207,

P(z|C = k,,uk,(f,%) =
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An Algorithm

P — Means represent the center of a cluster/class
m Overview Values for the means are the model

m k-Means

Model changes based on the classes assigned to the data
m EM

m Basic Clustering

B Break

Bayesian Networks init the £k means somehow
repeat until cluster assignments do not change:
Assign each data point to the mean nearest to it
Calculate new means for the data assigned to each cluster
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m Break
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An Algorithm

Means represent the center of a cluster/class

Unsuperv. Learning

" Oveiew Values for the means are the model

B g-IVleans .

Model changes based on the classes assigned to the data
m EM

m Basic Clustering
m Break

Bayesian Networks init the £k means somehow
repeat until cluster assignments do not change:
Assign each data point to the mean nearest to it
Calculate new means for the data assigned to each cluster

Example

Is the classification optimal?
What is it optimizing?
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Expectation-Maximization

2
Unsuperv. Learning mOdel parameters (9 (eg, Hn, 0 ,P(C = k))
= Overview observed variables z;

m k-Means

5 A Allseriih hidden variables C;

m Basic Clustering
m Break

Bayesian Networks init the 6, somehow
repeat until done:
E: compute expected values of hidden vars: P(C; = k|z;, 0f)
eg by aP(C = k)P(z;|C =k, 0)
M: maximize data likelihood using current estimates:
0k, with each x; weighted by P(C; = k|x;), eg by
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Expectation-Maximization

2
Unsuperv. Learning mOdel parameters (9 (eg, Hn, 0 ,P(C = k))
= Overview observed variables z;

m k-Means

5 A Allseriih hidden variables C;

m Basic Clustering
m Break

Bayesian Networks init the 6, somehow
repeat until done:
E: compute expected values of hidden vars: P(C; = k|x;,0%)
eg by aP(C = k)P(z;|C =k, 0)
M: maximize data likelihood using current estimates:
0k, with each x; weighted by P(C; = k|x;), eg by

0 argmaXZP(Z = z|lz,0)P(x, Z = z|0)
0 2

greedy increase of data likelihood
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Expectation-Maximization

Unsuperv. Learning Features
m Overview eye .
a E-Means m  Probabilistic clustering
m  Explicit model
m Basic Clustering | Loca”y Optlma|
m Break
Issues

Bayesian Networks

m  Number of classes (means, Gaussians, etc.)
m Local maxima
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Agglomerative Clustering

dendrogram
O(n?) vs O(kn)
AutoClass

m Basic Clustering
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Break

m asstbh
m exam 2
m  projects

B Break
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Bayesian Networks

Bayesian Networks
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The Alarm Domain

Unsuperv. Learning

Bayesian Networks
m Models

The Joint
Independence
EOLQs
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Figure 14.2 A typical Bayesian network, showing both the topology and the conditional
probability tables (CPTs). In the CPTs, the letters B, E, A, J, and M stand for Burglary,
Earthquake, Alarm, JohnCalls, and M aryCalls, respectively.
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Probabilistic Models

Unsuperv. Learning MDPS:

Bayesian Networks Naive Bayes:

m Example k'MeanS:

® The Joint

®m Independence . . |

" EOLGs Representation: variables, connectives

Inference: approximate, exact
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The Full Joint Distribution

Unsuperv. Learning ultimate power: knowing the probability of every possible atomic
Bt [V emertis event (combination of values)

m Example
® Models

®m Independence
m EOLQs
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The Full Joint Distribution

ultimate power: knowing the probability of every possible atomic

Unsuperv. Learning

Sevasbn NMeials event (combination of values)
m Example
® Models _ . . . o
simple inference via enumeration over the joint:
oL what is distribution of X given evidence e and unobserved Y
P(e|X)P(X)
P(Xl|e) = =aP(X,e)=a ) P(X,e
(Xle) = =50 (X0 =a Y P(X,e)

Bayes Net = joint probability distribution
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The Magic of Independence

In general:

P(zy,...,zn) = P(xp|lrpn_1,...,21)P(xp_1,...,71)

®m [Independence
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The Magic of Independence

In general:

P(xy,...,xy) P(zp|lrp-1,. . 21)P(xp_1,...,21)

n
1 P(zilwizy, ... 21)
i=1

®m [Independence
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The Magic of Independence

In general:

Unsuperv. Learning

Bayesian Networks

= Example P(x1,...,2y)
m Models

® The Joint

®m Independence

m EOLQs

P(z,|lzn_1,...,21)P(xp_1,...,71)

n
1 P(zilwizy, ... 21)
i=1

A Bayesian net specifies independence:

P(X;| X;—1,...,X1) = P(X;|parents(X;))
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The Magic of Independence

In general:

Unsuperv. Learning

Bayesian Networks

= Example P(x1,...,2y)
m Models

® The Joint

®m Independence

m EOLQs

P(z,|lzn_1,...,21)P(xp_1,...,71)

n
1 P(zilwizy, ... 21)
i=1

A Bayesian net specifies independence:
P(X;| X;—1,...,X1) = P(X;|parents(X;))

So we get:

n

P(xi,...,xp) = H P(x;|parents(X;))
i=1
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The Magic of Independence

In general:

Unsuperv. Learning

Bayesian Networks

m Example P(zi,...,x5)
m Models

® The Joint

®m Independence

m EOLQs

P(z,|lzn_1,...,21)P(xp_1,...,71)

n
1 P(zilwizy, ... 21)
i=1

A Bayesian net specifies independence:
P(X;| X;—1,...,X1) = P(X;|parents(X;))

So we get:

n

P(xi,...,xp) = H P(x;|parents(X;))
i=1

For n b-ary variables with p parents, that's nb? instead of ™!
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EOLQs

What question didn't you get to ask today?

Unsuperv. Learning

Bayesian Networks m  What's still confusing?
: fﬂxoadf:rs'e m  What would you like to hear more about?
® The Joint
m Independence Please write down your most pressing question about Al and put
it in the box on your way out.
Thanks!
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