CS 730/830: Intro AI

Unsuperv. Learning

Unsuperv. Learning

- Overview
- Bottom-Up
- RANSAC
- Break
- $\blacksquare k$ -Means
- An Algorithm
- EM
- Basic Clustering
- Summary
- **■** EOLQs

Unsupervised Learning

Overview

Unsuperv. Learning

■ Overview

■ Bottom-Up
■ RANSAC

■ Break

 $\blacksquare k$ -Means

■ An Algorithm

■ EM

■ Basic Clustering

■ Summary

■ EOLQs

modeling = predicting = understanding = compressing
eg, clustering
finding 'structure' in data

Bottom-Up Unsupervised Learning

Unsuperv. Learning

Overview

Bottom-Up

RANSAC

Break

k-Means

An Algorithm

EM

Basic Clustering

Summary

■ EOLQs

explain the data all-at-once vs piece-by-piece?

repeat

make a model to explain a minimal amount of data
check how much of the total data the model explains
until model fits a decent amount of the data
if model, remove explained data from the set
until hard to find a decent model or not enough data left

Random Sample Consensus (RANSAC)

```
Unsuperv. Learning
```

- Overview
- Bottom-Up

■ RANSAC

- Break
- \blacksquare k-Means
- An Algorithm
- EM
- Basic Clustering
- Summary
- EOLQs

given data, find a set of explanatory models:

```
repeat many times
    randomly pick minimum data to fit model
    find inliers
    repeat until no change
        fit model to inliers
        find new inliers
    if best model has enough inliers
    record model
    remove inliers from data
until best model not good enough or not enough data left
```

Break

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means
- An Algorithm
- EM
- Basic Clustering
- Summary
- EOLQs

- asst 10
- asst 11
- posters: two weeks from Friday (noon-2pm Kingsbury)

PDF of paper and tarball/zip of code via email

papers: four weeks from yesterday! (2pm my office)2 hardcopies, 1 copy of code (2 pages per page)

Wheeler Ruml (UNH)

k-Means Clustering

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break

k-Means

- An Algorithm
- EM
- Basic Clustering
- Summary
- EOLQs

Naive Bayes model: choose class, generate attributes independently

mixture model: choose class, generate data

$$P(x|\theta) = \sum_{k} P(C = k|\theta_k) P(x|C = k, \theta_k)$$

eg, for mixture of Gaussians,

$$P(x|C=k,\mu_k,\sigma_k^2) = \frac{1}{\sqrt{2\sigma_k^2\pi}} \exp\left(-\frac{(x-\mu_k)^2}{2\sigma_k^2}\right)$$

An Algorithm

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means

■ An Algorithm

- EM
- Basic Clustering
- Summary
- EOLQs

Means represent the center of a cluster/class

Values for the means are the model

Model changes based on the classes assigned to the data

init the k means somehow repeat until cluster assignments do not change:

Assign each data point to the mean nearest to it

Calculate new means for the data assigned to each cluster

An Algorithm

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means

■ An Algorithm

- EM
- Basic Clustering
- Summary
- EOLQs

Means represent the center of a cluster/class

Values for the means are the model

Model changes based on the classes assigned to the data

init the k means somehow repeat until cluster assignments do not change:

Assign each data point to the mean nearest to it Calculate new means for the data assigned to each cluster

Example

An Algorithm

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means

■ An Algorithm

- EM
- Basic Clustering
- Summary
- EOLQs

Means represent the center of a cluster/class

Values for the means are the model

Model changes based on the classes assigned to the data

init the k means somehow repeat until cluster assignments do not change:

Assign each data point to the mean nearest to it

Calculate new means for the data assigned to each cluster

Example

Is the classification optimal? What is it optimizing?

Expectation-Maximization

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means
- An Algorithm

EM

- Basic Clustering
- Summary
- EOLQs

model parameters θ (eg, $\mu, \sigma^2, P(C = k)$) observed variables x_j hidden variables C_j

init the θ_k somehow repeat until done:

E: compute expected values of hidden vars: $P(C_j=k|x_j,\theta_k)$ eg by $\alpha P(C=k)P(x_j|C=k,\theta_k)$

M: maximize data likelihood using current estimates: θ_k , with each x_j weighted by $P(C_j = k|x_j)$, eg by

$$\theta \leftarrow \underset{\theta}{\operatorname{argmax}} \sum_{z} P(Z = z | x, \theta) P(x, Z = z | \theta)$$

Expectation-Maximization

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- \blacksquare k-Means
- An Algorithm

EM

- Basic Clustering
- Summary
- EOLQs

model parameters θ (eg, $\mu, \sigma^2, P(C = k)$) observed variables x_j hidden variables C_j

init the θ_k somehow repeat until done:

E: compute expected values of hidden vars: $P(C_j=k|x_j,\theta_k)$ eg by $\alpha P(C=k)P(x_j|C=k,\theta_k)$

M: maximize data likelihood using current estimates: θ_k , with each x_j weighted by $P(C_j = k|x_j)$, eg by

$$\theta \leftarrow \underset{\theta}{\operatorname{argmax}} \sum_{z} P(Z = z | x, \theta) P(x, Z = z | \theta)$$

greedy increase of data likelihood

Expectation-Maximization

Unsuperv. Learning ■ Overview ■ Bottom-Up ■ RANSAC ■ Break ■ k-Means ■ An Algorithm ■ EM

■ Basic Clustering

■ Summary

■ EOLQs

Features

- Probabilistic clustering
- Explicit model
- Locally optimal

Issues

- Number of classes (means, Gaussians, etc.)
- Local maxima

Agglomerative Clustering

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- \blacksquare k-Means
- An Algorithm
- EM
- Basic Clustering
- Summary
- EOLQs

dendrogram

$$O(n^2)$$
 vs $O(kn)$

AutoClass

Summary

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means
- An Algorithm
- EM
- Basic Clustering
- Summary
- EOLQs

supervised learning: learning a function or a density unsupervised learning: explaining data reinforcement learning: learning how to act

EOLQs

Unsuperv. Learning

- Overview
- Bottom-Up
- **■** RANSAC
- Break
- $\blacksquare k$ -Means
- An Algorithm
- EM
- Basic Clustering
- Summary
- EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!