Supervised Learning: Summary So Far

- **Decision Trees**
- **Naive Bayes**
- **Boosting**

Learning as function approximation:

- **k-NN**: distance function (any attributes), any labels
- **Neural network**: numeric attributes, numeric or binary labels
- **Regression**: incremental training with LMS
- **3-Layer ANN**: train with BackProp

What about discrete attributes and labels?
Decision Trees

- Example
- Construction
- Break

Naive Bayes

Boosting
Example: WillWait

Decision Trees
- **Example**
- **Construction**
- **Break**

Naive Bayes

Boosting

Table: Examples for the restaurant domain.

<table>
<thead>
<tr>
<th>Example</th>
<th>Alt</th>
<th>Bar</th>
<th>Fri</th>
<th>Hun</th>
<th>Pat</th>
<th>Price</th>
<th>Rain</th>
<th>Res</th>
<th>Type</th>
<th>Est</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>X_1</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_2</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>30–60</td>
<td>No</td>
</tr>
<tr>
<td>X_3</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>Some</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_4</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Thai</td>
<td>10–30</td>
<td>Yes</td>
</tr>
<tr>
<td>X_5</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>French</td>
<td>>60</td>
<td>No</td>
</tr>
<tr>
<td>X_6</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Italian</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_7</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>0–10</td>
<td>No</td>
</tr>
<tr>
<td>X_8</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>Yes</td>
<td>Some</td>
<td>$$</td>
<td>Yes</td>
<td>Yes</td>
<td>Thai</td>
<td>0–10</td>
<td>Yes</td>
</tr>
<tr>
<td>X_9</td>
<td>No</td>
<td>Yes</td>
<td>Yes</td>
<td>No</td>
<td>Full</td>
<td>$</td>
<td>Yes</td>
<td>No</td>
<td>Burger</td>
<td>>60</td>
<td>No</td>
</tr>
<tr>
<td>X_{10}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$$$</td>
<td>No</td>
<td>Yes</td>
<td>Italian</td>
<td>10–30</td>
<td>No</td>
</tr>
<tr>
<td>X_{11}</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>No</td>
<td>None</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Thai</td>
<td>0–10</td>
<td>No</td>
</tr>
<tr>
<td>X_{12}</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Full</td>
<td>$</td>
<td>No</td>
<td>No</td>
<td>Burger</td>
<td>30–60</td>
<td>Yes</td>
</tr>
</tbody>
</table>

Figure 18.3 Examples for the restaurant domain.
Building a Decision Tree

DTLearn(examples, attributes, default)
- if no examples, return default
- if all same label, return it
- \(m \leftarrow \) majority label
- if no attributes, return \(m \)
- else
 - \(a \leftarrow \) choose attribute
 - make node that branches on \(a \)
 - remove \(a \) from attributes
 - for each value \(v \) of \(a \)
 - subtree \(\leftarrow \) DTLearn(examples with \(a = v \), attributes, \(m \))
 - add branch to subtree for \(v \) at node
 return node
want attribute that reduces uncertainty
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)

information gain of attribute \(A \):

\[H(X) - \sum_{a \in A} P(a)H(X_a) \]

where \(X_a \) contains only examples with \(A = a \)
want attribute that reduces uncertainty = entropy =

\[H(X) = - \sum_i P(x_i) \log_2 P(x_i) \]

where \(X \) is random var that takes value \(x_i \) with prob \(P(x_i) \)

information gain of attribute \(A \):

\[H(X) - \sum_{a \in A} P(a)H(X_a) \]

where \(X_a \) contains only examples with \(A = a \)

prune branches when gain is small (\(\chi^2 \) test, see p.705) or cross-validate
Naive Bayes
learning as function approximation

k-NN: distance function (any attributes), any labels

Neural network: numeric attributes, numeric or binary labels

Regression: incremental training with LMS

3-Layer ANN: train with BackProp

Decision Trees: easier with discrete attributes and labels

learning as density estimation
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

\[P(H) = 0.0001 \]
\[P(D|H) = 0.99 \]
\[P(D) = 0.01 \]

\[P(H|D) = \]
Bayes’ Theorem

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

If you don’t have \(P(D) \),
Bayes’ Theorem

\[
P(H|D) = \frac{P(H)P(D|H)}{P(D)}
\]

\[
\begin{align*}
P(H) &= 0.0001 \\
P(D|H) &= 0.99 \\
P(D) &= 0.01
\end{align*}
\]

\[
P(H|D) = \quad \text{(Calculate based on given probabilities)}
\]

If you don’t have \(P(D)\), sometimes it helps to note that

\[
P(D) = P(D|H)P(H) + P(D|\neg H)P(\neg H)
\]
Bayes’ Theorem:

$$P(H|D) = \frac{P(H)P(D|H)}{P(D)}$$
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H) \]
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H) \]

attributes independent, given class
Bayes’ Theorem:

\[P(H|D) = \frac{P(H)P(D|H)}{P(D)} \]

naive model:

\[P(D|H) = P(x_1, \ldots, x_n|H) = \prod_i P(x_i|H) \]

attributes independent, given class

\[P(H|x_1, \ldots, x_n) = \alpha P(H) \prod_i P(x_i|H) \]
The ‘Naive Bayes’ Classifier

\[P(H|x_1, \ldots, x_n) = \alpha P(H) \prod_{i} P(x_i|H) \]

attributes independent, given class

maximum \textit{a posteriori} = pick highest
maximum likelihood = ignore prior

watch for sparse data when learning!

learning as density estimation
<table>
<thead>
<tr>
<th>Decision Trees</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naive Bayes</td>
</tr>
</tbody>
</table>

Boosting
- Ensembles
- AdaBoost
- Behavior
- Summary
- EOLQs
committees, ensembles
weak vs strong learners
reduce variance, expand hypothesis space (eg, half-spaces)
N examples, T rounds, L a weak learner on weighted examples

$p \leftarrow$ uniform distribution over the N examples

for $t = 1$ to T do

\begin{itemize}
 \item $h_t \leftarrow$ call L with weights p
 \item $\epsilon_t \leftarrow h_t$'s weighted misclassification probability
 \item if $\epsilon_t = 0$, return h_t
 \item $\alpha_t \leftarrow \frac{1}{2} \ln(\frac{1-\epsilon_t}{\epsilon_t})$
 \item for each example i
 \begin{itemize}
 \item if $h_t(i)$ is correct, $p_i \leftarrow p_i e^{-\alpha_t}$
 \item else, $p_i \leftarrow p_i e^{\alpha_t}$
 \end{itemize}
 \end{itemize}

normalize p to sum to 1

return the h weighted by the α

to classify, choose label with highest sum of weighted votes
doesn’t overfit (maximizes margin even when no error) outliers get high weight, can be inspected
problems:
■ not enough data
■ hypothesis class too small
■ boosting: learner too weak, too strong
Supervised Learning: Summary

Decision Trees
- \(k\)-NN: distance function (any attributes), any labels
- **Neural network:** numeric attributes, numeric or binary labels

Boosting
- Regression: incremental training with LMS
- **3-Layer ANN:** BackProp learning

Decision Trees: easier with discrete attributes and labels
Naive Bayes: easier with discrete attributes and labels
Boosting: general wrapper to improve performance

Didn’t cover: RBFs, SVMs, deep learning, structured output learning
■ What question didn’t you get to ask today?
■ What’s still confusing?
■ What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!