Decision Trees	Decision	Trees	
----------------	----------	-------	--

Naive Bayes

Boosting

Supervised Learning: Summary So Far

learning as function approximation

Decision Trees

Naive Bayes

Boosting

k-NN: distance function (any attributes), any labels
Neural network: numeric attributes, numeric or binary labels
Regression: incremental training with LMS
3-Layer ANN: train with BackProp

what about discrete attributes and labels?

ecisio	n l	raac
cisio		1663

Example

■ Construction

Break

Naive Bayes

Boosting

Decision Trees

Wheeler Ruml (UNH)

Lecture 22, CS 730 – 3 / 19

2	Example	Attributes								Goa		
ction	Елапріс	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	Willy
es	X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Ye
	X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
	X_3	No	Yes	No	No	Some	\$	No	No	Burger	0–10	Ye.
	X_4	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	1030	Ye
	X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	Na
	X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0–10	Ye
	X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	Na
	X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Ye
	X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
	X_{10}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10–30	No
	<u>[</u>	No	No	No	No	None	\$	No	No	Thai	0–10	Ne
	X_{12}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Ye
	$\begin{array}{c} X_{10} \\ X_{11} \end{array}$	Yes No Yes	Yes No Yes	Yes No Yes	Yes No Yes	Full None	\$\$\$ \$ \$	No No No	Yes No	Italia Tha	ın i	in 10–30 i 0–10

Building a Decision Tree

Decision Trees Example Construction Break Naive Bayes Boosting	DTLearn (examples, attributes, default) if no examples, return default if all same label, return it $m \leftarrow$ majority label if no attributes, return m else $a \leftarrow$ choose attribute make node that branches on a remove a from attributes for each value v of a subtree \leftarrow DTLearn(examples with $a = v$, attributes, m) add branch to subtree for v at node return node

Decision Trees	wa
Example	
Construction	
Break	
Naive Bayes	
Boosting	

want attribute that reduces uncertainity

Branching

- Example
- Construction
- Break

Naive Bayes

Boosting

want attribute that reduces uncertainity = entropy =

$$H(X) = -\sum_{i} P(x_i) \log_2 P(x_i)$$

where X is random var that takes value x_i with prob $P(x_i)$

Branching

Decision Trees

Example

Construction

Break

Naive Bayes

Boosting

want attribute that reduces uncertainity = entropy =

$$H(X) = -\sum_{i} P(x_i) \log_2 P(x_i)$$

where X is random var that takes value x_i with prob $P(x_i)$

information gain of attribute A:

$$H(X) - \sum_{a \in A} P(a)H(X_a)$$

where X_a contains only examples with A = a

Branching

Decision Trees

Example

Construction

Break

Naive Bayes

Boosting

want attribute that reduces uncertainity = entropy =

$$H(X) = -\sum_{i} P(x_i) \log_2 P(x_i)$$

where X is random var that takes value x_i with prob $P(x_i)$

information gain of attribute A:

$$H(X) - \sum_{a \in A} P(a)H(X_a)$$

where X_a contains only examples with A = a

prune branches when gain is small (χ^2 test, see p.705) or cross-validate

Wheeler Ruml (UNH)

asst 10

Decision Trees

Example

■ Construction

Break

Naive Bayes

Boosting

Wheeler Ruml (UNH)

Naive Bayes

- So Far
- Bayes' Theorem
- The NB Model
- The NB Classifier

Boosting

Naive Bayes

Wheeler Ruml (UNH)

Lecture 22, CS 730 – 8 / 19 $\,$

Decision	Trees
Decision	11003

Naive Bayes

- So Far
- Bayes' Theorem
- The NB Model
- The NB Classifier

Boosting

learning as function approximation

k-NN: distance function (any attributes), any labels
Neural network: numeric attributes, numeric or binary labels
Regression: incremental training with LMS
3-Layer ANN: train with BackProp
Decision Trees: easier with discrete attributes and labels
learning as density estimation

Decision Trees

Naive Bayes

■ So Far

Bayes' Theorem

■ The NB Model

■ The NB Classifier

Boosting

 $P(H|D) = \frac{P(H)P(D|H)}{P(D)}$

Decision Trees

Naive Bayes

■ So Far

- Bayes' Theorem
- The NB Model
- The NB Classifier

Boosting

$$P(H|D) = \frac{P(H)P(D|H)}{P(D)}$$

P(H) = 0.0001P(D|H) = 0.99P(D) = 0.01

P(H|D) =

Wheeler Ruml (UNH)

Lecture 22, CS 730 – 10 / 19

Decision Trees
Naive Bayes
■ So Far
■ Bayes' Theorem
■ The NB Model
■ The NB Classifier
Boosting

$$P(H|D) = \frac{P(H)P(D|H)}{P(D)}$$

P(H) = 0.0001P(D|H) = 0.99P(D) = 0.01

P(H|D) =

If you don't have P(D),

Wheeler Ruml (UNH)

D · ·	—
Decision	l rees

Naive Bayes

- So Far
- Bayes' Theorem
- The NB Model
- The NB Classifier

Boosting

$$P(H|D) = \frac{P(H)P(D|H)}{P(D)}$$

P(H) = 0.0001P(D|H) = 0.99P(D) = 0.01

P(H|D) =

If you don't have P(D), somtimes it helps to note that

 $P(D) = P(D|H)P(H) + P(D|\neg H)P(\neg H)$

			- T
1 10	cici	<u>nn</u>	Trees
De	LIDI		11663

Naive Bayes

■ So Far

■ Bayes' Theorem

■ The NB Model

■ The NB Classifier

Boosting

 $P(H|D) = \frac{P(H)P(D|H)}{P(D)}$

D			Trees
Dec	151	on	Irees
		U 11	11000

Naive Bayes

■ So Far

■ Bayes' Theorem

■ The NB Model

■ The NB Classifier

Boosting

naive model:

$$P(D|H) = P(x_i, \dots, x_n|H) = \prod_i P(x_i|H)$$

Bayes' Theorem:

Naive Bayes

■ So Far

■ Bayes' Theorem

The NB Model

■ The NB Classifier

Boosting

 $P(H|D) = \frac{P(H)P(D|H)}{P(D)}$

naive model:

$$P(D|H) = P(x_i, \dots, x_n|H) = \prod_i P(x_i|H)$$

attributes independent, given class

Wheeler Ruml (UNH)

Bayes' Theorem:

Naive Bayes

■ So Far

■ Bayes' Theorem

The NB Model

■ The NB Classifier

Boosting

 $P(H|D) = \frac{P(H)P(D|H)}{P(D)}$

naive model:

$$P(D|H) = P(x_i, \dots, x_n|H) = \prod_i P(x_i|H)$$

attributes independent, given class

$$P(H|x_1,\ldots,x_n) = \alpha P(H) \prod_i P(x_i|H)$$

Wheeler Ruml (UNH)

Naive Bayes

So Far

Bayes' Theorem

■ The NB Model

The NB Classifier

Boosting

 $P(H|x_1,\ldots,x_n) = \alpha P(H) \prod_i P(x_i|H)$

attributes independent, given class

maximum *a posteriori* = pick highest maximum likelihood = ignore prior

watch for sparse data when learning!

learning as density estimation

Decision T	rees
------------	------

Naive Bayes

Boosting

- Ensembles
- AdaBoost
- Behavior
- Summary
- EOLQs

Boosting

Wheeler Ruml (UNH)

Lecture 22, CS 730 – 13 / 19

Ensemble Learning

Decision	Trees

Naive Bayes

Boosting

- EnsemblesAdaBoost
- Behavior
- Summary
- EOLQs

committees, ensembles weak vs strong learners reduce variance, expand hypothesis space (eg, half-spaces)

AdaBoost

Decision Trees

Naive Bayes

Boosting

Ensembles

AdaBoost

Behavior

SummaryEOLQs

N examples, T rounds, L a weak learner on weighted examples

 $p \leftarrow$ uniform distribution over the N examples for t = 1 to T do $h_t \leftarrow \text{call } L \text{ with weights } p$ $\epsilon_t \leftarrow h_t$'s weighted misclassification probability if $\epsilon_t = 0$, return h_t $\alpha_t \leftarrow \frac{1}{2} \ln(\frac{1-\epsilon_t}{\epsilon_t})$ for each example iif $h_t(i)$ is correct, $p_i \leftarrow p_i e^{-\alpha_t}$ else, $p_i \leftarrow p_i e^{\alpha_t}$ normalize p to sum to 1 return the h weighted by the α

to classify, choose label with highest sum of weighted votes

Boosting Function

Wheeler Ruml (UNH)

Lecture 22, CS 730 – 16 / 19

Behavior

Decision Trees	
Vaive Bayes	
Boosting	
_	
Ensembles	
AdaBoost	
Behavior	
Summary	
■ EOLQs	

doesn't overfit (maximizes margin even when no error) outliers get high weight, can be inspected problems:

- I not enough data
- hypothesis class too small
- boosting: learner too weak, too strong

Supervised Learning: Summary

Decision Trees

Naive Bayes

Boosting

EnsemblesAdaBoost

Rehavior

Summary

EOLQs

k-NN: distance function (any attributes), any labels **Neural network:** numeric attributes, numeric or binary labels

Regression: incremental training with LMS **3-Layer ANN:** BackProp learning

Decision Trees: easier with discrete attributes and labels **Naive Bayes:** easier with discrete attributes and labels **Boosting:** general wrapper to improve performance

Didn't cover: RBFs, SVMs, deep learning, structured output learning

EOLQs

Decision 7	Trees
Naive Bay	/es

- Boosting
- Ensembles
- AdaBoostBehavior
- Summary
- Summary
 EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!