BackProp	
Decision Trees	
	1 handouts: slides
	asst 4 is due
	730W blog entries were due

■ Three layers

- Nonlinear
- BackProp
- Break

Decision Trees

BackProp

Wheeler Ruml (UNH)

Lecture 21, CS 730 – 2 / 12

Supervised Learning: Summary So Far

BackProp

- Three layers
- Nonlinear
- BackProp
- Break

Decision Trees

k-**NN** : distance function (any attributes), any labels **Neural network** : numeric attributes, numeric or binary labels

Regression: incremental training with LMS **3-Layer ANN:** non-linear wrt features

Inductive Logic Programming: logical concepts

Three layersNonlinear

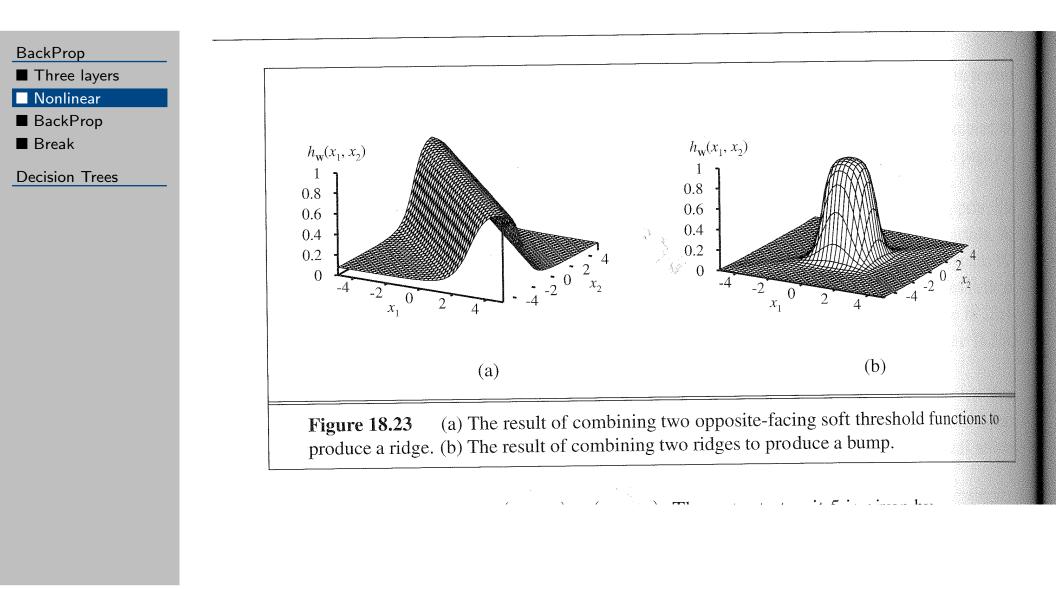
BackProp

Break

Decision Trees

'hidden layer' non-linear! training: backwards error propagation recurrence

Nonlinearity



Three layers

- Nonlinear
- BackProp
- Break

Decision Trees

k inputs, j hidden units, i outputs $g^\prime(in_i)$ is derivative of activation function wrt input i

$$\Delta_i = g'(in_i)(\hat{y} - y)$$

$$W_{j,i} = W_{j,i} - \alpha a_j \Delta_i$$

Three layers

- Nonlinear
- BackProp

Break

Decision Trees

k inputs, j hidden units, i outputs $g^\prime(in_i)$ is derivative of activation function wrt input i

$$\Delta_{i} = g'(in_{i})(\hat{y} - y)$$

$$W_{j,i} = W_{j,i} - \alpha a_{j} \Delta_{i}$$

$$\Delta_{j} = g'(in_{j}) \sum_{i} W_{j,i} \Delta_{i}$$

$$W_{k,j} = W_{k,j} - \alpha a_{k} \Delta_{j}$$

only locally optimal, dependence on structure

Lecture 21, CS 730 – 6 / 12

- Three layersNonlinear
- BackProp
- Break

Decision Trees

asst 4

- asst 5: data, tool, reference
- projects!

Decision Trees

- Example
- Construction
- EOLQs

Decision Trees

Example: WillWait

Decision Trees

- Example
- Construction
- EOLQs

Example	Attributes										Goal
Lampic	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	Yes	No	No	Yes	Some	\$\$\$	No	Yes	French	0–10	Yes
X_2	Yes	No	No	Yes	Full	\$	No	No	Thai	30-60	No
X_3	No	Yes	No	No	Some	\$	No	No	Burger	0-10	Yes
X_4°	Yes	No	Yes	Yes	Full	\$	Yes	No	Thai	1030	Yes
X_5	Yes	No	Yes	No	Full	\$\$\$	No	Yes	French	>60	No
X_6	No	Yes	No	Yes	Some	\$\$	Yes	Yes	Italian	0-10	Yes
X_7	No	Yes	No	No	None	\$	Yes	No	Burger	0–10	No
X_8	No	No	No	Yes	Some	\$\$	Yes	Yes	Thai	0–10	Yes
X_9	No	Yes	Yes	No	Full	\$	Yes	No	Burger	>60	No
X_{10}^{*}	Yes	Yes	Yes	Yes	Full	\$\$\$	No	Yes	Italian	10-30	No
X_{11}	No	No	No	No	None	\$	No	No	Thai	0–10	No
X_{12}^{11}	Yes	Yes	Yes	Yes	Full	\$	No	No	Burger	30–60	Yes

Building a Decision Tree

BackProp Decision Trees Example Construction EOLQs	DTLearn (examples, attributes, default) if no examples, return default if all same label, return it $m \leftarrow$ majority label if no attributes, return m else $a \leftarrow$ choose attribute make node that branches on a remove a from attributes for each value v of a subtree \leftarrow DTLearn(examples with $a = v$, attributes, m) add branch to subtree for v at node
	add branch to subtree for v at node return node

BackProp	

Decision Trees

- Example
- Construction
- EOLQs

want attribute that reduces uncertainity

Branching

Decision Trees

Example

Construction

EOLQs

want attribute that reduces uncertainity = entropy =

$$H(X) = -\sum_{i} P(x_i) \log_2 P(x_i)$$

where X is random var that takes value x_i with prob $P(x_i)$

Branching

BackProp

Decision Trees

Example

Construction

EOLQs

want attribute that reduces uncertainity = entropy =

$$H(X) = -\sum_{i} P(x_i) \log_2 P(x_i)$$

where X is random var that takes value x_i with prob $P(x_i)$

information gain of attribute A:

$$H(X) - \sum_{a \in A} P(a)H(X_a)$$

where X_a contains only examples with A = a

Branching

BackProp

Decision Trees

Example

Construction

EOLQs

want attribute that reduces uncertainity = entropy =

$$H(X) = -\sum_{i} P(x_i) \log_2 P(x_i)$$

where X is random var that takes value x_i with prob $P(x_i)$

information gain of attribute A:

$$H(X) - \sum_{a \in A} P(a)H(X_a)$$

where X_a contains only examples with A = a

stop when gain is small (χ^2 test, see p.705) or cross-validate

EOLQs

BackProp

- Decision Trees
- Example
- Construction
- EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!