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BackProp

BackProp
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Supervised Learning: Summary So Far

k-NN : distance function (any attributes), any labels

BackProp

. Lhrj_e layers Neural network : numeric attributes, numeric or binary labels
| onlinear

- Ee e Regression: incremental training with LMS

m Break

3-Layer ANN: non-linear wrt features

Decision Trees

Inductive Logic Programming: logical concepts
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The Three-layer Architecture

‘hidden layer’

m Three layers non_linear!

training: backwards error propagation
recurrence
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Nonlinearity

BackProp
® Three layers
m BackProp
m Break (3, 5,)
Decision Trees 1 4
0.8
0.6
0.4
02
0

Figure 18.23  (a) The result of combining two opposite-facing soft threshold function
produce a ridge. (b) The result of combining two ridges to produce a bump.
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Backwards Error Propagation

BackProp k inputs, 5 hidden units, ¢ outputs
= Three layers g'(in;) is derivative of activation function wrt input ¢

m Nonlinear

m Break
Decision Trees AZ — g/(lnz)(@ - y)
Wii = Wi —aaA
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Backwards Error Propagation

BackProp k inputs, 5 hidden units, ¢ outputs
= Three layers g'(in;) is derivative of activation function wrt input ¢

m Nonlinear

m Break
Decision Trees AZ — gl(lnz)(ﬁ - y)
Wii = Wi —aaA

Aj = g'ing) Y Wil

Wk,j = Wk,j—aakAj

only locally optimal, dependence on structure

Wheeler Ruml (UNH) Lecture 21, CS 730 -6 / 12



Break

m asst4d
m asst 5: data, tool, reference
m projects!
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Decision Trees

Decision Trees
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Example: WillWait

BackProp
Attributes

Decision Trees Example :

Alt | Bar i Fri | Hun| Pal | Price| Rain!| Res | Type Est

: Egnl_sg; =en X, Yes | No | No | Yes| Some | $3% | No | Yes | French | 0-10
X5 Yes | No | No | Yes  Full 3 No | No | Thai | 30-60
X3 No | Yes | No | No | Some $ No | No | Burger | 0-10
X4 Yes | No | Yes | Yes | Full $ Yes | No Thai 10--30
X5 Yes | No | Yes! No | Full | $8%5 | No | Yes French| >60
Xe No | Yes | No | Yes Some| 8% | Yes | Yes| ltalian | 0-10
X7 No | Yest No | No i None $ Yes | No | Burger | 0-10
X3 No | No i No | Yes| Some | $$ | Yes | Yes | Thai 0-10
Xy No | Yes | Yes | No | Full $ Yes | No | Burger | >6(
X0 Yes | Yes | Yes | Yes | Full | $38 | No | Yes | [Italian | 10-30
X1 No | No!l No| No | None $ No | No Thai 10
X1 ] Yes | Yes | Yes | Yes | Full $ No V' No ! Burger | 30-60
Figure 18.3  Examples for the restaurant domain.
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Building a Decision Tree

BackProp DTLearn(examples, attributes, default)
Decision Trees if no examples, return default

m Example _ _

if all same label, return it

m EOLQs

m <— majority label
If no attributes, return m
else
a < choose attribute
make node that branches on a
remove a from attributes
for each value v of a
subtree <— DTLearn(examples with a = v, attributes, m)
add branch to subtree for v at node
return node
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Branching

want attribute that reduces uncertainity

m Construction
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Branching

BackProp want attribute that reduces uncertainity = entropy =

Decision Trees

Bl H(X) == 2 Plai)logz Py

m EOLQs

where X is random var that takes value x; with prob P(x;)
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Branching

BackProp want attribute that reduces uncertainity = entropy =

Decision Trees

Bl H(X) == 2 Plai)logz Py

m EOLQs

where X is random var that takes value x; with prob P(x;)

information gain of atttribute A:

H(X)— ) Pla)H(X,)

acA

where X, contains only examples with A = a
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Branching

BackProp want attribute that reduces uncertainity = entropy =

Decision Trees

m Example H(X)=— Z P(x;)logy P(x;)

m EOLQs

where X is random var that takes value x; with prob P(x;)

information gain of atttribute A:

H(X)— ) P(a)H(X,)
acA

where X, contains only examples with A = a

stop when gain is small (x? test, see p.705) or cross-validate
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EOLQs

BackProp m  What question didn't you get to ask today?
Bleefifon Thes m  What's still confusing?
- Exa”lp'et_ m  What would you like to hear more about?

Please write down your most pressing question about Al and put
it in the box on your way out.

Thanks!
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