CS 730/730W/830: Intro AI

Solving MDPs

RL

3 handouts: slides, asst4, asst3 reference solution 730W blog entries were due

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

Solving MDPs

Markov Decision Process (MDP)

Solving MDPs

■ Definition

- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

initial state: s_0

transition model: T(s, a, s') = probability of going from s to

s' after doing a.

reward function: R(s) for landing in state s.

terminal states: sinks = absorbing states (end the trial).

objective:

total reward: reward over (finite) trajectory:

$$R(s_0) + R(s_1) + R(s_2)$$

discounted reward: penalize future by γ :

$$R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) \dots$$

find:

policy: $\pi(s) = a$

optimal policy: π^*

proper policy: reaches terminal state

What to do?

Solving MDPs

■ Definition

■ What to do?

- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

$$\pi^*(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U^{\pi^*}(s')$$

$$U^{\pi}(s) = E[\sum_{t=0}^{\infty} \gamma^{t} R(s_{t}) | \pi, s_{0} = s]$$

The key:

$$U(s) = R(s) + \gamma \max_{a} \sum_{s'} T(s, a, s') U(s')$$

(Richard Bellman, 1957)

Value Iteration

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

Repeated Bellman updates:

Repeat until happy for each state
$$s$$

$$U'(s) \leftarrow R(s) + \gamma \max_a \sum_s' T(s, a, s') U(s')$$

$$U \leftarrow U'$$

For infinite updates, guaranteed to reach equilibrium. Equilibrium is unique solution to Bellman equations!

Solving MDPs

■ Definition

■ What to do?

■ Value Iteration

■ Stopping

■ Sweeping

■ Break

■ Policy Iteration

■ Policy Evaluation

■ Summary

RL

 $||U_{i+1} - U_i|| = \max \text{ difference between corresponding elts}|$

if
$$||U_{i+1} - U_i|| < \epsilon(1 - \gamma)/\gamma$$
 then $||U_{i+1} - U^*|| < \epsilon$

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

$$||U_{i+1} - U_i|| = \max \text{ difference between corresponding elts}|$$

if
$$||U_{i+1} - U_i|| < \epsilon(1-\gamma)/\gamma$$
 then $||U_{i+1} - U^*|| < \epsilon$

if
$$||U_{i+1} - U^*|| < \epsilon$$
 then $||U^{\pi_{i+1}} - U^{\pi^*}|| < 2\epsilon\gamma/(1-\gamma)$

Solving MDPs

- **■** Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

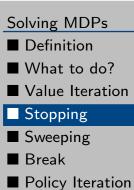
 $||U_{i+1} - U_i|| = \max \text{ difference between corresponding elts}|$

if
$$||U_{i+1} - U_i|| < \epsilon(1-\gamma)/\gamma$$
 then $||U_{i+1} - U^*|| < \epsilon$

if
$$||U_{i+1} - U^*|| < \epsilon$$
 then $||U^{\pi_{i+1}} - U^{\pi^*}|| < 2\epsilon\gamma/(1-\gamma)$

$$loss < \frac{2(max-update)\gamma}{1-\gamma}$$

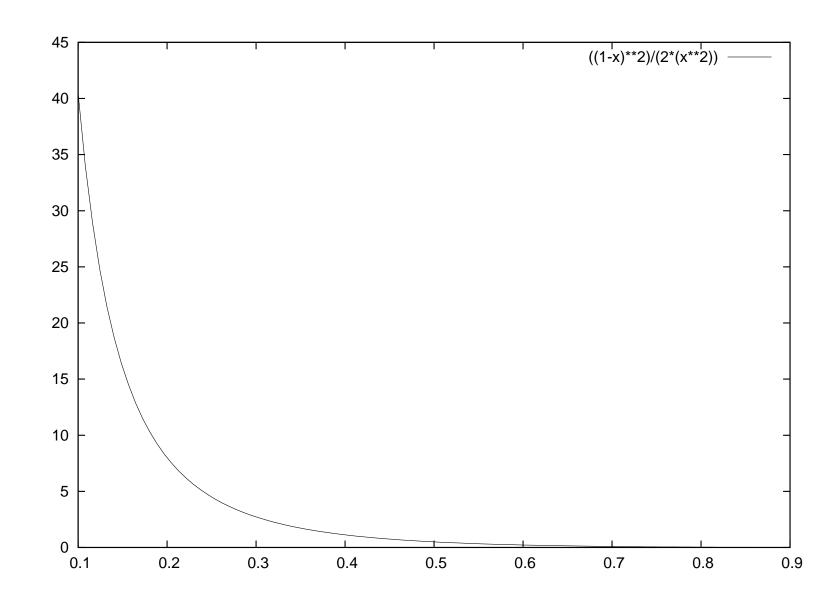
Until
$$max$$
- $update \leq loss - bound \frac{(1-\gamma)}{2\gamma}$ for each state s
$$U(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} T(s, a, s') U(s')$$



 \blacksquare Policy Evaluation

■ Summary

RL



Prioritized Sweeping

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

concentrate updates on states whose value changes!

```
to update state s with change \delta in U(s): update U(s) priority of s \leftarrow 0 for each predecessor s' of s: priority s' \leftarrow \max of current and \max_a \delta \hat{T}(s', as')
```

Break

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

- asst 3: solution
- asst 4: simulators
- final projects
- ofice hours by appointment

Policy Iteration

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

```
repeat until \pi doesn't change: given \pi, compute U^{\pi}(s) for all states given U, calculate policy by one-step look-ahead
```

If π doesn't change, U doesn't either. We are at an equilibrium (= optimal π)!

Policy Evaluation

Solving MDPs

- Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

computing $U^{\pi}(s)$:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U(s')$$

linear programming (N^3) or

Policy Evaluation

Solving MDPs

- **■** Definition
- What to do?
- Value Iteration
- Stopping
- Sweeping
- Break
- Policy Iteration
- Policy Evaluation
- Summary

RL

computing $U^{\pi}(s)$:

$$U^{\pi}(s) = R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U(s')$$

linear programming (N^3) or simplified value iteration:

do a few times:

$$U_{i+1}(s) \leftarrow R(s) + \gamma \sum_{s'} T(s, \pi(s), s') U(s')$$

(simplified because we are given π , no max over a)

Summary of MDP Solving

Solving MDPs

■ Definition

■ What to do?

■ Value Iteration

■ Stopping

■ Sweeping

■ Break

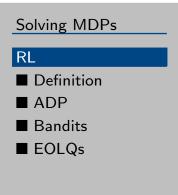
■ Policy Iteration

■ Policy Evaluation

■ Summary

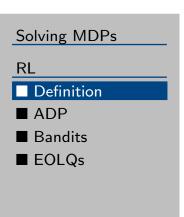
RL

- lacktriangle value iteration: compute U^{π^*}
- lacksquare policy iteration: compute U^π using
 - ♦ linear algebra
 - simplified value iteration
 - ◆ a few updates (modified PI)



Reinforcement Learning

Reinforcement Learning (RL)



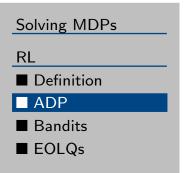
build a policy based on experience (s, a, s', r)

objective:

finite horzon: $R(s_0) + R(s_1) + R(s_2)$

infinite discounted reward: $R(s_0) + \gamma R(s_1) + \gamma^2 R(s_2) + \dots$

Adaptive Dynamic Programming



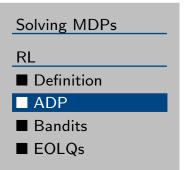
'model-based'. active vs passive learn T and R as we go, calculating U(s) using MDP methods

Until
$$max$$
-update $\leq loss - bound \frac{(1-\gamma)^2}{2\gamma^2}$ for each state s
$$U(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} T(s, a, s') U(s')$$

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

problem:

Adaptive Dynamic Programming



'model-based'. active vs passive learn T and R as we go, calculating U(s) using MDP methods

Until
$$max$$
-update $\leq loss - bound \frac{(1-\gamma)^2}{2\gamma^2}$ for each state s
$$U(s) \leftarrow R(s) + \gamma \max_a \sum_{s'} T(s, a, s') U(s')$$

$$\pi(s) = \underset{a}{\operatorname{argmax}} \sum_{s'} T(s, a, s') U(s')$$

problem: greedy (local minima) be sure to explore!

Exploration vs Exploitation

$$U^{+}(s) \leftarrow R(s) + \gamma \max_{a} f\left(\sum_{s'} T(s, a, s') U^{+}(s'), N(a, s)\right)$$

where $f(u, n) = R_{\text{max}}$ if n < k, u otherwise

EOLQs

Solving MDPs

RL

Definition
ADP
Bandits
EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!