CS 730/730W/830: Intro AI

Heuristics	
Regression	73
POP	
Beyond STRIPS	

1 handout: slides 730W blog entries were due

Heuristics

- Planning Graphs
- Cake World
- Relaxed Plan
- Heuristics

Regression

POP

Beyond STRIPS

Planning Heuristics

Wheeler Ruml (UNH)

Lecture 15, CS 730 – 2 / 23

Heuristics Planning Graphs Cake World Relaxed Plan Heuristics 	2 types of layers: fact and action track both positive and negative grounded literals 'no-op' frame actions		
Regression POP	actions a and b mutex iff:		
Beyond STRIPS	inconsistency: a deletes add of b interference: a deletes precondition of b competing needs: inconsistent preconditions		
	literals a and b mutex iff:		
	inconsistent: a is $\neg b$ inconsistent support: all ways of achieving them are mutex		

Cake World

Heuristics

Initial: Have(Cake)

```
Planning GraphsCake World
```

■ Relaxed Plan

Heuristics

Regression

POP

Beyond STRIPS

```
Eat: Pre: Have(Cake)
    Post: ¬ Have(Cake), Eaten(Cake)
Bake: Pre: ¬Have(Cake)
    Post: Have(Cake)
```

Goal: Have(Cake), Eaten(Cake)

Relaxed Plan

Heuristics
Planning Graphs
■ Cake World
Relaxed Plan
Heuristics
Regression
POP

Beyond STRIPS

 H_1 max too small, sum too large Basic graph assumes parallelism: serial planning graph

building a plan:

■ choose no-op when possible

I re-use previously chosen action when possible

optimal relaxed plan is admissible but NP-hard need actions if optimizing costs (not makespan)

Heuristics

н	eur	rict	ice
	Cui	130	.ics

- _____ 1.
- Planning Graphs
- Cake World
- Relaxed Plan
- Heuristics

Regression

POP

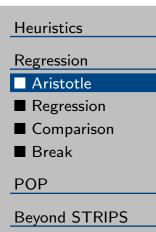
Beyond STRIPS

- 0
- 2. number of unachieved goals
- 3. $H_1 \max$
- 4. H_1 sum
- 5. planning graph max
- 6. planning graph sum
- 7. relaxed plan

н	eur	rict	ICS
	Cui	130	103

Regression

- Aristotle
- Regression
- Comparison
- Break


POP

Beyond STRIPS

Regression

Wheeler Ruml (UNH)

Lecture 15, CS 730 – 7 / 23

We deliberate not about ends, but about means. For a doctor does not deliberate whether he shall heal, nor an orator whether he shall persuade, nor a statesman whether he shall produce law and order, nor does any one else deliberate about his end. They assume the end and consider how and by what means it is attained, and if it seems easily and best produced hereby; while if it is achieved by one means only they consider *how* it will be achieved by this and by what means *this* will be achieved, till they come to the first cuase, which in the order of discovery is last...and what is last in the order of analysis seems to be first in the order of becoming. And if we come on an impossibility, we give up the search, for example, if we need money and this cannot be got; but if a thing appears possible we try to do it.

— Aristotle, Nicomachean Ethics

Regression

leuristics	1
Regression	S
Aristotle	_
Regression	1
Comparison	-
Break	ļ
POP	
Beyond STRIPS	(
	(
	_
	1

Note that STRIPS has full initial state, partial goal state (= set). Search over sets of states!

Initial node: set of states in which goal is true
Applicable: at least one effect present, deletes not present, non-deleted preconditions present
Child node: remove adds, add preconditions
Goal node: subset of initial state

Doesn't assume reversible actions Lower branching factor Larger space $(3^n \text{ vs } 2^n)$

Comparison

Heuristics

Forward: states

- + state known: strong heuristic, expressivity
- - branching factor
- irrelevant states

Backward: sets of states

- \blacksquare + relevant states
 - partial states: larger space, weaker heuristic, expressivity

Regression

- Aristotle
- Regression
- Comparison
- Break

POP

Beyond STRIPS

Break

Regression

- Aristotle
- Regression
- Comparison
- Break

POP

Beyond STRIPS

- asst 3 milestone
- final projects: must see me before turning in
- office hours

Heuristics

Regression

POP

■ POP

Search

■ Main Loop

■ Finding Threats

Principles

Comparison

Beyond STRIPS

Partial-order Planning

Wheeler Ruml (UNH)

Partial-order Planning

Heuristics
Regression
POP
POP
■ Search
Main Loop
E Finalia a Thurse

- Finding Threats
- Principles
- Comparison

Beyond STRIPS

Initial node: empty plan Branch on all achievers of selected precondition Branch on all threat resolutions Goal node: plan without open preconditions

Heuristics
Regression
POP
POP
Search
Main Loop

■ Finding Threats

Principles

Comparison

Beyond STRIPS

Principle of least commitment

plan: bindings, temporal links, causal links
complete: every precondition achieved, all vars instantiated
consistent: no temporal or binding contradictions
threat: potential clobber

refinement = adding actions and links

Heuristics	
Regression	

POP

■ POP

Search

Main Loop

Finding Threats

Principles

Comparison

Beyond STRIPS

initialize plan to empty

loop

pick unachieved precondition
 find or **add** action to establish it

 if no such, backtrack
 add causal and temporal link
 for every threat
 put threat before achiever **or** after dependent
 if inconsistent, backtrack

 for possible threats

 add inequality constraint

Finding Threats

Heuristics
Regression
POP
■ POP
Search
■ Main Loop
Finding Threats
Principles
Comparison
Beyond STRIPS

For each new effect and each causal link check if effect unifies with ¬ (condition of link) For each new causal link and each step check if effect of step unifies with ¬ (condition of link)

- refinement = adding actions and links
- achieve, establish, produce
- promote, demote, protect
- inequality, separatation, non-codesignation

Principles

He	uristic	s
1 IC	unsuc	.5

Regression

POP

POP

Search

Main Loop

■ Finding Threats

Principles

Comparison

Beyond STRIPS

- Causal links
 - Limits search to relevant actions
 - Easy plan modification and explanation
- Least commitment
 - Flexibility in choosing what to branch on
 - Limits backtracking
 - Smaller search space
 - Allows more pruning of implicit plans
 - Hard to find a good heuristic

Comparison

Heuristics
Regression

- POP
- POP
- Search
- Main Loop
- Finding Threats
- Principles
- Comparison
- Beyond STRIPS

Forward: states

- + state known: strong heuristic, expressivity
- - branching factor
- irrelevant states

Backward: sets of states

- + relevant states
- partial states: larger space, weaker heuristic, expressivity

Partial-order: plans

- $\blacksquare + small space$
- \blacksquare +/- least commitment
- poor heuristics

Heuristics

Regression

POP

Beyond STRIPS

Comparison

Extensions

■ Setting

EOLQs

Beyond STRIPS

Wheeler Ruml (UNH)

Lecture 15, CS 730 – 19 / 23

Comparison

Heuristics

Regression

- POP
- Beyond STRIPS
- Comparison
- Extensions
- Setting
- EOLQs

Forward: states

- + state known: strong heuristic, expressivity
- - branching factor
- irrelevant states

Backward: sets of states

- + relevant states
- partial states: larger space, weaker heuristic, expressivity

Partial-order: plans

- + small space
- \blacksquare +/- least commitment
- poor heuristics

STRIPS Extensions

Heuristics	
Regression	

POP

- Beyond STRIPS
- Comparison
- Extensions
- Setting
- EOLQs

negated goals: no problem with CWA disjunctive precondition: for regression, just branch conditional effects: for regression, if we need the effect, plan for the condition

universal preconditions and effects: just ground goals and preconditions

Heuristics	ST
Regression	dis
POP	
Beyond STRIPS	1.
Comparison	2.
Extensions	3.
Setting	5.
■ EOLQs	4.
	5.

TRIPS assumes static, deterministic world, discrete time, single liscrete actions.

- ... time, resources
- 2. concurrent actions
- 3. abstraction: hierarchical planning
- 4. uncertainty: eg, disjunctive effects
- 5. execution monitoring, replanning
- 6. continuous state
- 7. multiple (self-interested) agents

EOLQs

Heuristics
Regression
РОР
Beyond STRIPS
Comparison
Extensions
Setting

EOLQs

What question didn't you get to ask today?

- What's still confusing?
 - What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!