■ Concurrent Actions	
The Planning Graph	
	1 handouts: slides

Concurrent Actions

Concurrent Actions

2^k vs incremental

The Planning Graph

Concurrent Actions

The Planning Graph

- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

The Planning Graph

Simple Heuristics

Concurrent Actions

- The Planning Graph
- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

- 1. h(n) = 0
- 2. number of unachieved goals
- 3. $H_1 \max$
- 4. H_1 sum

 Concurrent Actions <u>The Planning Graph</u> Simple Heuristics <u>Planning Graphs</u> 	2 types of layers: fact and action track both positive and negative grounded literals 'no-op' frame actions
Cake WorldBreak	actions a and b mutex iff:
 Relaxed Plan Comparison Heuristics EOLQs 	inconsistency: a deletes add of b interference: a deletes precondition of b competing needs: inconsistent preconditions
	literals a and b mutex iff:
	inconsistent: a is $\neg b$ inconsistent support: all ways of achieving them are mutex

Lecture 14, CS 730 – 5 / 11

Cake World

■ Concurrent Actions

The Planning Graph

- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

Initial: Have(Cake)

```
Eat: Pre: Have(Cake)
    Post: ¬ Have(Cake), Eaten(Cake)
Bake: Pre: ¬Have(Cake)
    Post: Have(Cake)
```

Goal: Have(Cake), Eaten(Cake)

Concurrent Actions

The Planning Graph

- Simple Heuristics
- Planning Graphs
- Cake World

Break

- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

asst 3

project proposals: talk with me this week or nextoffice hours

■ exam 1

Relaxed Plan

■ Concurrent Actions

The Planning Graph

- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

building a plan:

- choose no-op when possible
 - re-use previously chosen action when possible
- H_1 and basic PG assume parallelism: serial planning graph optimal relaxed plan is admissible but NP-hard need actions if optimizing costs (not makespan)

Comparison

Concurrent Actions

The Planning Graph

- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

level-based heuristics

1. poor if many 'concurrent' actions at one level

max vs sum

 h^n

1. sum poor if positive interactions

1. poor if negative interactions

Heuristics

- Concurrent Actions
- The Planning Graph
- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

- 1. 0
- 2. number of unachieved goals
- 3. $H_1 \max$
- 4. H_1 sum
- 5. planning graph max
- 6. planning graph sum
- 7. relaxed plan

EOLQs

■ Concurrent Actions

- The Planning Graph
- Simple Heuristics
- Planning Graphs
- Cake World
- Break
- Relaxed Plan
- Comparison
- Heuristics
- EOLQs

- What question didn't you get to ask today?
- What's still confusing?
- What would you like to hear more about?

Please write down your most pressing question about AI and put it in the box on your way out.

Thanks!