Propositional Logic	
First-Order Logic	
	1 handout: slides

_		
Dra	nocitional	
FIU	DOSILIONA	LOAIC

- Logic
- Reasoning
- Methods
- Example
- Refutation
- CNF
- Break

Propositional Logic

Wheeler Ruml (UNH)

Lecture 11, CS 730 – 2 / 15

Propositional Logic

Logic

Reasoning
Methods
Example
Refutation
CNF
Break

First-Order Logic

A logic is a formal system:

- syntax: defines sentences
- semantics: relation to world
- inference rules: reaching new conclusions

three layers: proof, models, reality

soundness, completeness

flexible, general, principled (Advice Taker, 1958)

computing entailment soundness, completeness

 $\alpha \models \beta$ iff $\alpha \land \neg \beta$ is unsatisfiable determining satisfiability is NP-complete [NP-hard = polytime to verify certificate of 'yes'] therefore, verification that β is not entailed is polytime

said another way: $\alpha \models \beta$ iff $\alpha \rightarrow \beta$ is valid determining validity/tautology is co-NP-complete [co-NP-hard = polytime to verify certificate of 'no'] therefore, verification that β is not entailed is polytime

Reasoning Methods

- variable elimination: Davis-Logemann-Loveland exhaustively branch on variable assignments
- model finding: WalkSAT tweak assignment until satisfying
- modus ponens, resolution: resolution refutation theorem proving derive new clauses until query is proved

An Example of Propositional Reasoning

Propositional Logic	lf t
Logic	mv
Reasoning	•
Methods	ım
Example	if i
Refutation	
■ CNF	
Break	Pro
First-Order Logic	

f the unicorn is mythical, then it is immortal, but if it is not nythical, then it is a mortal mammal. If the unicorn is either mmortal or a mammal, then it is horned. The unicorn is magical f it is horned.

Prove: the unicorn is magical.

Propositional Logic
Logic
Reasoning
Methods
Example
Refutation
■ CNF
Break
First-Order Logic

Given KB, is α entailed?

Pro	positional	Logic
1 10	positional	LUgic

- Logic
- Reasoning
- Methods
- Example
- Refutation
- CNF
- Break

Given KB, is α entailed? (Is it true in all models of the KB?)

Resolution Refutation Proofs

Pro	positional	Logic
	positional	LOBIC

- Logic
- Reasoning
- Methods
- Example
- Refutation
- CNF
- Break

First-Order Logic

Given KB, is α entailed? (Is it true in all models of the KB?) Is KB $\wedge \neg \alpha$ unsatisfiable?

Resolution Refutation Proofs

Prop	ositional	Logic

- Logic
- Reasoning
- Methods
- Example
- Refutation
- CNF
- Break
- First-Order Logic

Given KB, is α entailed? (Is it true in all models of the KB?) Is KB $\wedge \neg \alpha$ unsatisfiable?

Resolution is refutation complete.

Conversion to Conjunctive Normal Form

Propositional Logic

- Logic
- Reasoning
- Methods
- Example
- Refutation
- CNF
- Break
- First-Order Logic

- $\mathsf{Syntax:}\ \land,\lor,\neg,\rightarrow(\supset,\Rightarrow),\leftrightarrow$
- 1. eliminate \leftrightarrow
- 2. eliminate \rightarrow
- 3. move \neg inward: $\neg \neg x$, $\neg(x \land y)$, , $\neg(x \lor y)$
- 4. distribute $\lor: x \lor (y \land z)$

- Propositional Logic
- Logic
- Reasoning
- $\blacksquare \mathsf{Methods}$
- Example
- $\blacksquare Refutation$
- CNF
- Break
- First-Order Logic

- asst 5
- asst 6

projects: share thoughts next week

Lecture 11, CS 730 – 10 / 15

Propositional Logic

First-Order Logic

■ First-Order Logic

EOLQs

Gottlob Frege (1848-1925) PhD at 25

Begriffsschrift, 1879 (concept script)

"a formula language, modelled on that of arithmetic, of pure thought."

Wheeler Ruml (UNH)

Propositional Logic

First-Order Logic

■ First-Order Logic

EOLQs

 $\forall person \ ItIsRaining() \rightarrow IsWet(person)$

1. Things:

- constants: *John*, *Chair23*
- functions (thing → thing): MotherOf(John), SumOf(1,2)
- 2. Relations:
 - predicates (objects $\rightarrow T/F$): IsWet(John), IsSittingOn(MotherOf(John), Chair23)
- 3. Complex sentences:
 - connectives: IsWet(John) ∨
 IsSittingOn(MotherOf(John), Chair23)
 - quantifiers and variables: ∀personIsWet(person)..., ∃person...

Propositional Logic

First-Order Logic

EOLQs

- 1. constants: objects
- 2. predicates: relations between objects
- 3. variables
- 4. quantifiers
- 5. functions
- 6. connectives

Propositional Logic

First-Order Logic
First-Order Logic
EOLQs

 $\begin{array}{ll} \forall person \; \forall time & (ItIsRaining(time) \land \\ & \neg \exists umbrella \; Holding(person, umbrella, time)) \rightarrow \\ & IsWet(person, time) \end{array}$

John loves Mary.

All crows are black.

Dolphin are mammals that live in the water.

Everyone loves someone.

Mary likes the color of one of John's ties.

I can't hold more than one thing at a time.

EOLQs

Propositional Logic
First-Order Logic
■ First-Order Logic
EOLQs

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out. *Thanks!*