Logic in Practice

"Spock had a big, big effect on me. I am so much more Spock-like today than when I first played the part in 1965 that you wouldn't recognize me. I'm not talking about appearance, but thought processes. Doing that character, I learned so much about rational logical thought that it reshaped my life." – Leonard Nimoy

1 handout: slides asst 2 milestone was due

- Clausal Form
- Example
- $\blacksquare Unification$
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

First-Order Inference

Clausal Form

First-Order Inference

- Clausal FormExample
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

- 1. Eliminate \rightarrow using \neg and \lor
- 2. Push \neg inward using de Morgan's laws
- 3. Standardize variables apart
- 4. Eliminate \exists using Skolem functions
- 5. Move \forall to front
- 6. Move all \land outside any \lor (CNF)
- 7. Can finally remove \forall and \land

Example

- First-Order Inference
- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

- 1. Anyone who can read is literate.
- 2. Dolphins are not literate.
- 3. Some dolphins are intelligent.
- 4. Prove: someone intelligent cannot read.

Skolem, standardizing apart

Unifying Two Terms

First-Order Inference

- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

- 1. if one is a constant and the other is
- 2. a constant: if the same, done; else, fail
- 3. a function: fail
- 4. a variable: **substitute** *constant* for *var*
- 5. if one is a function and the other is
- 6. a different function: fail
- 7. the same function: unify the two arguments lists
- 8. a variable: if *var* occurs in *function*, fail
- 9. otherwise, **substitute** *function* for *var*
- 10. otherwise, **substitute** one variable for the other

Carry out substitutions on all expressions you are unifying! Build up substitutions as you go, carrying them out before checking expressions? See handout on website.

Tricky Cases

First-Order Inference

- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology

Logic in Practice

```
don't unify x and f(x)!
as in P(x, x) meets \neg P(z, f(z))
```

```
note resolvent of P(f(x)) and \neg P(z) \lor P(f(z))
```

Semi-decidable: if yes, will terminate

Completeness

First-Order Inference

- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology

Logic in Practice

Gödel's Completeness Theorem (1930) says a complete set of inference rules exists for FOL.

Herbrand base: substitute all constants and combinations of constants and functions in place of variables. Potentially infinite!

Herbrand's Theorem (1930): If a set of clauses is unsatisfiable, then there exists a finite subset of the Herbrand base that is also unsatisfiable.

Ground Resolution Theorem: If a set of ground clauses is unsatisfiable, then the resolution closure of those clauses contains \perp .

Robinson's Lifting Lemma (1965): If there is a proof on ground clauses, there is a corresponding proof in the original clauses.

- Clausal Form
- Example
- $\blacksquare Unification$
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

asst 2

office hours, final projects

Equality

First-Order Inference

- Clausal Form
- Example
- $\blacksquare Unification$
- Tricky Cases
- Completeness
- Break

Equality

- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

Equality:
$$\forall xy (Holding(x) \land \neg(x = y) \rightarrow \neg Holding(y))$$

Jnique:
$$\exists ! x P(x) \equiv \exists x (P(x) \land \forall y (\neg (x = y) \rightarrow \neg P(y)))$$

Specific Answers

First-Order Inference

- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

Use the "answer literal":

- 1. FatherOf(Alice, Bob)
- 2. FatherOf(Caroline, Bob)
- 3. FatherOf(x, y) \rightarrow ParentOf(x, y)
- Query: Who is Caroline's parent?

First-Order Inf	erence
-----------------	--------

- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology
- Logic in Practice

Breadth-first: all first-level resolvents, then second-level...

- Complete, slow
- **Set of Support:** at least one parent comes from SoS
 - Complete if non-SoS are satisfiable, nice
- **Input Resolution:** at least one parent from the input set
 - Complete for Horn KBs

Simplifications: remove tautologies, subsumbed clauses, and pure literals.

Terminology

First-Order Inference

- Clausal Form
- Example
- Unification
- Tricky Cases
- Completeness
- Break
- Equality
- Specific Answers
- Res. Strategies
- Terminology

Logic in Practice

Interpretation: maps constant symbols to objects in the world, each function symbol to a particular function on objects, and each predicate symbol to a particular relation.
Model of P: an interpretation in which P is true. Eg, Famous(BarbaraBush) is true under the intended interpretation but not when the symbol BarbaraBush maps to Joe Shmoe.

Satisfiable: \exists a model for P. Eg, $P \land \neg P$ is not satisfiable. **Entailment:** if Q is true in every model of P, then $P \models Q$. Eg, $P \land Q \models P$.

Valid: true in any interpretation. Eg, $P \lor \neg P$.

Logic in Practice

- Natural Deduction
- Inference Rules
- EOLQs

Logic in Practice

Wheeler Ruml (UNH)

Lecture 10, CS 730 – 13 / 16

Natural Deduction

First-Order Inference

Logic in Practice

- Natural Deduction
 Inference Rules
- Inference Rules
- EOLQs

- 1. given \exists , can introduce new constant
- 2. given sentence with ground expression, can introduce \exists
- 3. given \forall , can introduce new constant
- 4. given sentence, can introduce \forall over new free variable
- \land elimination/introduction:
- \vee introduction:
- $\neg \neg$ elimination:

Logic in Practice ■ Natural Deduction

Inference Rules

EOLQs

Modus Ponens:

Resolution:

Abduction:

Induction:

maathematical induction \neq inductive reasoning

EOLQs

First-Order Inference	
Logic in Practice	
Natural Deduction	
■ Inference Rules	
EOLQs	

Please write down the most pressing question you have about the course material covered so far and put it in the box on your way out. *Thanks!*