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Abstract

Beam searches are a very effective algorithm for solving
problems that prove intractable to complete algorithms like
weighted A* and greedy search. Unfortunately, the inadmis-
sible pruning that is the hallmark of a beam search makes
the algorithm incomplete. Existing complete extensions to
beam search expand pruned nodes systematically according
to generation order. Selecting pruned nodes to expand based
upon generation order often causes the expansion of the most
promising nodes to be delayed. This can cause the complete
backtracking beam searches to expend unnecessary effort ex-
ploring less promising parts of the search space leading to
delayed solutions, lower quality solutions, or both. In this pa-
per, we show that considering heuristic information when de-
ciding where to backtrack can significantly improve the per-
formance of backtracking beam searches. Although the beam
searches using informed backtracking outperform the other
kinds of restarting beam searches, none of the backtracking
beam search algorithms are competitive with weighted A*
and other best-first searches.

Introduction
Beam searches are a very effective algorithm for solving
problems that prove intractable to complete algorithms like
weighted A* (Pohl 1970) and greedy search (Doran and
Michie 1966). In order to make the search more tractable,
beam searches only consider the most promising nodes, and
eliminate the less promising nodes from contention.

The inadmissible pruning done by beam searches make
the algorithm incomplete. One option that can ameliorate
this problem is to never permanently inadmissably prune a
node, but instead to simply delay expansion of that node.
Two existing extensions to beam search are beam search us-
ing limited discrepancy backtracking (BULB) (Furcy and
Koenig 2005a) and beam-stack search (Zhou and Hansen
2005). These algorithms do bookkeeping to track where
nodes were pruned, and if the search ever runs out of nodes
to expand without finding a solution, the algorithms expand
the pruned nodes. These existing extensions to beam search
expand pruned nodes systematically according to expansion
order.

Selecting pruned nodes to expand based upon expan-
sion order often causes the expansion of the most promis-
ing nodes to be delayed. Considering heuristic information
when deciding where to backtrack can significantly improve

the performance of restarting beam searches. Despite this
improvement, the beam searches with heuristically informed
backtracking are not as effective as weighted A* and other
best-first search algorithms.

Previous Work
Previous attempts to ameliorate the problems associated
with inadmissible pruning in beam search can be classified
into two broad categories. The first approach, called com-
plete anytime beam (CAB) search was introduced by Zhang
(Zhang 1998). This algorithm calls a beam search, and if
the beam search fails to find a solution, it tries again with
a larger beam. Eventually this algorithm will find a solu-
tion because at some point the beam will become so large
that nothing important is pruned. Although this approach is
simple and reasonably effective in some domains like grid
path planning, it has the serious drawback that the amount
of space required to search to a given depth increases as time
passes. Another drawback associated with this approach is
that no information from the first searches is used in the sub-
sequent searches, resulting in wasted computational effort.

An alternative approach is to expand pruned nodes with-
out restarting the search. This is the approach taken in
BULB (Furcy and Koenig 2005a) and beam-stack search
(Zhou and Hansen 2005). Both beam-stack search and
BULB reconsider pruned nodes without restarting the
search, but they do so in a very systematic manner that does
not consider heuristic information. When selecting pruned
nodes to expand, BULB begins with the first nodes that were
pruned. Beam-stack search uses the opposite approach, ex-
panding nodes that were most recently pruned. Both al-
gorithms approaches allow a complete exploration of the
search space, but this completeness comes at a cost. When
deciding where to backtrack, BULB and beam-stack search
use expansion order to decide which pruned nodes to ex-
pand, which means that the most promising pruned nodes
might have to wait a significant amount of time before fi-
nally being expanded. We propose an alternative extension
to beam search that incorporates the heuristic evaluation of
a node,h(n), when deciding which pruned nodes to expand.
We evaluated this new algorithm by comparing it to exist-
ing complete beam searches on two domains that are par-
ticularly difficult for incomplete beam searches, grid path
planning and dynamic robot path planning. Our empirical



results show that beam searches that backtrack to the best
nodes according toh(n) outperform all other kinds of back-
tracking beam search, but that these algorithms fall short of
the performance of weighted A* and other alternative greedy
search algorithms.

Beam Search with Informed Backtracking
BULB and beam-stack search opt to begin backtracking at
the top or bottom of the search tree because those nodes can
easily be regenerated and expanded. This allows the pruned
nodes to be deleted since they can be regenerated later. The
simplest way to incorporate a more informed backtracking
into a beam search is to never permanently prune a node, but
instead to only temporarily delay the expansion of the less
promising nodes. The pruned nodes are all put in a collec-
tion until the beam search terminates without a solution, at
which point the most promising nodes are removed from the
collection until a new beam is full (contains as many nodes
as the beam width), and the search is resumed using the new
beam. Depending on how often the search backtracks, the
collection should be either an unordered list, which incurs
a linear cost when backtracking but has constant time in-
sertions, or a some kind of sorted data structure with loga-
rithmic inserts and logarithmic removals. Which approach
is preferable depends on the ratio of backtracks to nodes,
which will vary across domains.

Although the algorithm is straightforward, it does have a
single very important parameter. In order to select the most
promising nodes, there must be a comparator that is capa-
ble of identifying the most promising nodes. There are a
number of logical choices for defining the most promising
nodes. The simplest sort predicates compare the nodes on
the heuristic evaluation of the cost to the cheapest goal,h(n)
or the estimated cost of the cheapest solution going through
that node,f(n). These algorithms are called informed back-
tracking onh(n) andf(n) respectively. One advantage of
backtracking onf(n) is that when the search returns a solu-
tion, the lowestf(n) from all of the pruned nodes as well as
the nodes remaining in the beam provides a lower bound on
the optimal cost solution. Other algorithms can also provide
this bound, but finding the pruned node with the smallest
f(n) is not easy for the other algorithms, since the pruned
nodes are sorted according to some other criteria.

Another option is to sort the nodes according to the qual-
ity of the node relative to the quality of the nodes that were
actually selected for expansion. Figure 2 shows a picture de-
tailing the concept of indecision. For each depth layer, the
f(n) value is noted for the most promising node at that level.
For all other nodes, their quality isf(n)−f(n)best expanded.
When using this function to evaluate nodes, the algorithm is
called informed backtracking on indecision min. A similar
metric is used to compare thef(n) value of each node to the
lowest quality node at its level that won expansion. The eval-
uation function in that case isf(n) - f(n)worst expanded.
This algorithm is called informed backtracking on indeci-
sion max.

Another way to sort pruned nodes is to compare their
quality relative to other nodes with the same estimated num-
ber of steps to the goal,d(n). With this evaluation crite-

INFORMED BACKTRACKING BEAM SEARCH(beam width)

1 current layer = {initial}
2 considered = {initial}

// considered is a collection of generated nodes
3 next layer = ∅
4 extra nodes = ∅
5 solution = NIL
6 while (solution not found and

(current layer 6= ∅ or extra nodes 6= ∅))
7 solution = expand layer
8 Returnsolution

EXPAND LAYER

1 if current layer == ∅
2 fill current layer with nodes from extranodes
3 For allx ∈ current layer
4 expandnode(x)
5 current layer = next layer
6 next layer = ∅

EXPAND NODE(node)

1 children = expand (node)
2 for eachchild in children
3 if there is space innext layer andchild /∈ considered
4 insertchild into next layer
5 Add child to considered
6 elseif next layer containsbeam width nodes and

child /∈ considered
7 Add child to considered
8 if child is better than worst item innext layer
9 removed = worst item fromnext layer

10 Addremoved to extra nodes
11 Removeremoved from next layer
12 Addchild to next layer
13 else
14 Addchild to extra nodes
15 elseif there is space innext layer andchild ∈ considered
16 incumbent = child in considered
17 if child better thanincumbent
18 replaceincumbent with child in hash table
19 removeincumbent from next layer
20 Addchild to next layer
21 elseif there is no space innext layer andchild ∈ considered
22 incumbent = child in considered
23 if child better thanincumbent and

incumbent ∈ next layer
24 replaceincumbent with child in hash table
25 removeincumbent from next layer
26 Addchild to next layer
27 elseif child is better than worst item innext layer
28 replaceincumbent with child in hash table
29 removed = worst item fromnext layer
30 Addremoved to extra nodes
31 Removeremoved from next layer
32 elseif child is worse than worst item innext layer
33 replaceincumbent with child in considered
34 replaceincumbent with child in extra nodes

Figure 1: Informed Backtracking Beam Search Algorithm



Figure 2: Indecision

ria, for eachd(n) value, the algorithm tracks the bestf(n)
found on any node with thatd(n) value. When nodes are
pruned, their quality is defined to be the difference between
the node’sf(n) value and the bestf(n) value found with
the samed(n) value, orf(n)− f(n)best with same d.

Another option is to dynamically select the most effective
sort predicate. Selecting the sort predicate can be viewed as
a K-arm bandit problem where each sort predicate is an arm,
and the reward provided by selecting each action is how deep
the search is able to go with nodes selected according to that
sort predicate. Unfortunately, this method is of little value
since the most effective policy is to always sort the nodes on
their heuristic value.

The algorithm bears a striking resemblance to MSC-
kWA* (Furcy and Koenig 2005b), and for certain parameter
settings, the algorithms are identical. If the beam search uses
f to order the rejected nodes, it is the same as MSC-kWA*
where the weight is 1.0 and the size of the commit list is
the same as K. While MSC-kWA* modifies expansion order
by changing the number of nodes that are expanded at one
time and changing the size of the pool of nodes to expand,
informed backtracking modifies expansion order by modi-
fying how the pruned nodes are to be sorted in ways that go
beyond changing the weight in f’ as MSC-kWA* does.

There is significant reason to believe that beam searches
using informed backtracking will outperform both varieties
of backtracking beam search as well as complete anytime
beam search. When selecting which nodes to backtrack to,
BULB and beam-stack search both select nodes based upon
search expansion order, making no consideration for heuris-
tic evaluation which beam search using informed backtrack-
ing does. The heuristic often contains valuable information
about a node’s potential, helping to differentiate between
promising nodes and nodes that probably are not worth fur-
ther consideration. BULB and beam-stack search disregard
this information, and it is no surprise that beam searches
using informed backtracking are able to find high quality

solutions in less time by using the heuristic when choos-
ing pruned nodes to expand. Another advantage of beam
searches with informed backtracking is that they do not redo
any work, as is the case with complete anytime beam search.

Informed Backtracking Results
Two domains that proved particularly problematic for beam
searches are grid path planning and dynamic robot path plan-
ning (Wilt, Thayer, and Ruml 2010). In both of those do-
mains, beam searches using sufficiently small beams often
fail to find any solution because they prune all nodes that
lead to a goal. In domains that lack dead ends like sliding
tile puzzles and pancake puzzles, beam searches that do no
backtracking at all are extremely effective. Since a back-
tracking and a non-backtracking beam search perform ex-
actly the same if the ordinary non-backtracking beam search
finds a solution, we shall only consider domains where the
non-backtracking beam searches often fail to find solutions.

Algorithms tested were run on Dell Optiplex 960, Core2
duo E8500 3.16 GHz, 8 GB RAM machines running 64-
bit Linux. The algorithms were implemented in Objective
Caml and compiled to native binaries. Beam searches were
all run with beam widths of 50000, 10000, 5000, 1000, 500,
100, 50, 10, 5, and 3. Algorithms were allowed to run for
300 seconds. Algorithms that did not find a solution in the
required time period are considered to have failed to find a
solution.

The grids considered in grid path planning were 2000
cells across and 1200 cells tall. The obstacles were ran-
domly placed. In each instance, approximately 35% of the
cells were blocked, so there are about 840,000 states. Move-
ment was allowed in the four cardinal directions. In unit cost
grid path planning, each move costs 1. In life cost grid path
planning, the cost of the move is the same as the y coordi-
nate. Consequently, grid path planning with life costs the
shortest path is rarely the same as the same as the best path.
In both variants, the heuristic calculated the distance of the
optimal path assuming no obstacles. In the grid path plan-
ning domains, many states have the same f estimate, so we
break ties in favor of nodes with low h.

The dynamic robot path planning domain is almost iden-
tical to that used by Likhachev, Gordon, and Thrun (2003)
(we used different constants to discretize the space). With
our discretization constants, there are approximately211

states in the state space. In this domain, the goal is to drive
a robot from the start pose (velocity and location) to the
goal pose by manipulating the heading and velocity. Con-
straints are placed upon what moves are allowed based upon
physics. For example, there are limits on the acceleration
and the robot’s turn radius depends on how fast it is mov-
ing. For a heuristic, we remove these constraints and as-
sume the robot can move at its maximum velocity along the
shortest path between its current location and the goal. We
randomly placed lines throughout the space to serve as ob-
stacles. The dynamic robot path planning domain poses spe-
cial challenges to beam searches because the space not only
has nodes that do not have any children, but it also has nodes
beneath which there are children, but zero goals. If the beam
search fills the entire beam with these nodes that do not lead



to a goal, the algorithm terminates without returning a solu-
tion.

Before comparing informed backtracking to BULB,
beam-stack search, or complete anytime beam search, we
must first compare the different informed backtracking pred-
icates against one another to find what is the most effective
way to evaluate pruned nodes. As can be seen in Figure 3 re-
populating the beam with nodes with the lowesth(n) value
is the clear choice for finding solutions quickly. In the plots
in this figure, as well as all subsequent plots shown, the X
axis is the log base 10 of the raw CPU time. The Y axis plots
the normalized solution quality. Finding the best solutionof
all algorithms tested earns a score of 1. Failing to find a so-
lution earns a score of 0. Finding a solution that is not as
good as the best known solution earns a score proportional
to how suboptimal the solution in question is. Anytime algo-
rithms were terminated after finding their first solution. For
each algorithm/parameter pair, the results from all instances
were averaged to place each point on the graph. The most
effective algorithms are colored to make them more distinct.

In dynamic robot path planning and grid path planning
with unit cost, selecting pruned nodes to expand based on
h(n) is always the best choice. In grid path planning with
life costs, if higher quality solutions are desired the pruned
nodes should be selected in order of theirf(n). The more
exotic ordering predicates based upon indecision did not per-
form anywhere near as well as simply expanding nodes in
h(n) or f(n) order, as the best these node evaluation criteria
were able to achieve is parity. In the average case, the best
choice for finding a solution quickly is unquestionablyh(n).

Backtracking Results
Figure 4 shows the results of the most effective informed
backtracking beam searches along with existing alternatives.
We normalize the quality of a solution as between 0 and 1.
We perform this normalization by dividing the cost of the
best solution found for the problem by the cost of the solu-
tion returned by an algorithm. Failing to find a solution earns
a score of 0 and finding the best solution over all algorithms
earns a score of 1. We calculate this number for each in-
stance, and then take the average across all instances with a
selected beam width to produce one point on the graph. For a
particular algorithm, we plot a point for all beam widths con-
sidered and connect each point to the two beam widths that
are adjacent to it. Although all of the algorithms are anytime
algorithms (or easy to convert into anytime algorithms), we
terminated all algorithms after they returned their first solu-
tion. Some algorithms failed to find a solution within the
300 second time limit, so they were charged with the entire
300 seconds they consumed, and the solution was assessed
to be of 0 quality.

As we recall from the previous section, in the dynamic
robot path planning domain and in grid path planning with
unit cost, the most effective way to rank pruned nodes was
theh(n) function. For the grid path planning with life costs,
the evaluation function was eitherh(n) if a solution is de-
sired as quickly as possible orf(n) if we are looking for a
high quality solution.

In the dynamic robot path planning domain, shown in
the left pane of figure 4 we can see that none of the other
complete beam search variants beats backtracking onh(n)
in terms of both finding solutions quickly and finding high
quality solutions, as long as the appropriate beam width is
selected.

In grid path planning with life costs, shown in the center
pane of figure 4, backtracking onh(n) is more effective than
any existing complete alternative, as long as an appropri-
ate beam width is selected. None of the backtracking beam
searches can compete with backtracking onf(n) when eval-
uating in terms of solution quality.

In grid path planning with unit cost, shown in the right
pane of figure 4, we can see that restarting on h is more ef-
fective at finding solutions quickly, but there is a tiny region
where complete anytime beam search and beam-stack search
provide a better time-solution quality trade off.

Comparison with Alternative Algorithms

Although we have just seen that informed backtracking
beam searches outperform BULB, beam-stack search and
complete anytime beam search, one very important question
that has yet to be considered is how the informed backtrack-
ing beam searches compare to other algorithms like greedy
search, weighted A*, and MSC-kWA*.

When comparing against MSC-kWA* a major issue is se-
lecting parameters. We ran the algorithm with a variety of
weights and sizes of k and the commit list size and the single
most important parameter proved to be the weight, dominat-
ing the effects of the other parameters. For this reason, we
allow the weight to vary in the plot for MSC-kWA*, and
kept the other parameters constant. We observed that the
performance of MSC-kWA* was fairly constant no matter
what the size of the commit list was and the k used, but us-
ing a commit list size of 10 and a k of 3 produced as good a
solution-time trade-off as any other k/commit list size pair.
For this reason, we kept the size of the commit list constant
at 10 and kept k constant at 3 and allowed the weight to vary.

In the left pane of Figure 5 we can see that weighted A* is
the clear choice in the dynamic robot path planning domain,
finding high quality solutions faster than any alternative as
long as the weight is not too low. In the grid path planning
domains with both life and unit costs weighted A* is still a
very effective algorithm, but its dominance is less complete
in these domains. We can see in grid path planning with life
costs that with high weights, MSC-kWA* provides better so-
lutions given the same amount of time. In grid path planning
with unit costs, seen in the right pane of Figure 5, there is a
small region where MSC-kWA* provides better solutions in
the same amount of time and a different region where in-
formed backtracking beam searches usingh(n) provide the
best solutions in the same amount of time. Although these
small regions exist, weighted A* is more robust, consistently
providing a very strong, if not the best, time-solution quality
trade-off.
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Figure 3: Informed Backtracking with various evaluation functions
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Figure 4: Informed Backtracking with other complete beam searches
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Figure 5: Informed Backtracking with other search algorithms



Discussion
One very important question is why backtracking onh(n)
is so effective. Intuitively, it is clearly better to use heuris-
tic information when deciding where to backtrack to, which
explains why informed backtracking works so much bet-
ter than BULB or beam-stack search. It is also no surprise
that beam search using informed backtracking outperforms
complete anytime beam search, since beam search using in-
formed backtracking never re-expands nodes, as complete
anytime beam search does.

What is less clear is whyh(n) is so much better than
f(n) and the indecision-based evaluation functions. If the
beam search repopulates the beam using only the heuris-
tic evaluation of the pruned nodes, the beam search is be-
having similarly to a greedy search, and in these three do-
mains greedy search proves quite effective at finding solu-
tions quickly, always finding a solution in less time than any
kind of informed backtracking beam search. Backtracking
on h(n) forces the backtracking phase of the algorithm to
be extremely greedy, which seems to help it find a solution
quicker than the more deliberative evaluation functions that
all use various derivatives off(n).

Future Work
The informed backtracking algorithm, as proposed, can con-
sume an space proportional to the size of the state space. The
algorithm keeps all nodes ever generated, and never deletes
any nodes, no matter how unpromising the node may ap-
pear. One major advantage of BULB and beam-stack search
is that they operate in space linearly proportional to the max-
imum depth to which the search progresses. The informed
backtracking beam search algorithm could be modified to
only require storing the nodes that were actually expanded,
which would incur the same cost that BULB and beam-stack
search pay which is generating the same node from the same
parent multiple times.

This can be accomplished by tracking the quality of the
best child not expanded for all nodes that are expanded. If
the parent nodes are kept sorted according to the quality of
their most promising pruned child, finding the most promis-
ing pruned node to expand is simply a question of regener-
ating the children of the parent node with the most promis-
ing pruned child and finding the child that was pruned. In
the event that children nodes have equal quality, the nodes
should be sorted lexicographically to impose a full ordering
which will allow the algorithm to uniquely identify which
child node to keep. This will allow the algorithm to reduce
its memory consumption by a factor of the branching fac-
tor of the domain in consideration, but comes at the cost of
requiring nodes to be re-expanded.

Conclusion
Incorporating heuristic information when deciding which
pruned nodes to expand is clearly a good decision, as it
outperforms other varieties of backtracking beam search in
terms of both time to solution and quality of solutions found.
Although informed backtracking beam searches are the most
successful kind of backtracking beam search, the algorithm

falls significantly short of the performance of alternatives
like weighted A*.

Although beam search with informed backtracking does
not work as well as weighted A* on problems like dynamic
robot path planning or grid path planning, beam searches
with informed backtracking maintain one of the core advan-
tages of beam searches, which is that beam searches scale
very gracefully. Weighted A* derivatives work poorly on the
7x7 sliding tile puzzle, failing to find solutions a significant
amount of the time. Both basic beam searches and restarting
beam searches are able to solve these large problems that are
out of reach for weighted A* type searches.
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