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Abstract 
 
Informed search strategies rely on information or 
heuristics to find the shortest path to the goal.  
Understanding the intricacies of these search 
strategies and the heuristics they employ is of great 
importance to AI research.  Visualizations of a search 
space may provide some insight.  However, 
visualizing large hierarchical data can be challenging.  
Traditional graph visualizations such as top-down or 
left-right tree layouts would yield massive images 
that are difficult to navigate or distill any useful 
information at a glance.  In this paper we evaluate an 
interactive visualization for large tree structures.  We 
use these visualizations to explore the search spaces 
of the 8-Puzzle.  We show how this interactive 
visualization can be used to compare two common 
heuristics for the 8-Puzzle. 
 

Introduction 
 
The most well-known best-first search strategy is A*.  
The A* search strategy evaluates nodes in a state 
space by combining the cost to reach a node n with 
the estimated cost of the optimal path to the goal 
from n.  The estimated cost is defined by a heuristic 
function, h(n).  It follows that if h(n) does not 
overestimate then A* is both complete and optimal. 
 
If we look at how A* performs on a two-dimensional 
grid world we can see contours develop as A* fans 
out from the initial state.  The contours represent 
nondecreasing ranges of f-values.  F-values represent 
the cost to reach a node n plus the cost of the optimal 
path to the goal from n. 
 
Visualizations of these contours and other patterns 
may serve as tools to develop a deeper understanding 
of heuristic search algorithms.  They may also be 
used to measure the quality of a heuristic function or 
compare two heuristics.  Models like the two-
dimensional grid world are ideal for developing these 
visualizations because of their geographic nature.  
The physical representation of the model can be used 
as the basis of the visualization (see figure 1).  There 
exists models that are more abstract like the N-Puzzle 
where the physical model is not as useful (see figure 
3).   

 

 
 
Figure 1 Visualization showing contours in an A* 
search on grid world (courtesy of Jordan Thayer). 

All hope is not lost for these abstract models.  Instead 
of visualizing the physical representation of the 
model we can visualize the search space.  The search 
space can be viewed as a tree of search nodes that 
represent a state.  The root node represents the initial 
state.  A vertex between two nodes in the tree 
represents the action taken from the state of the 
parent to generate the state for the child.  
 
In some forms of heuristic search it is possible for the 
search to revisit a state.  If we were to construct a 
graph of states for a search space it would in some 
cases be a graph and not a tree.  But what if we are to 
consider the search space at a higher level as a graph 
of search nodes that refer to a state which may or 
may not be duplicated.  Each node is guaranteed to be 
unique and has a unique path to the root.  A search 
space represented this way is clearly a tree by 
definition.  It follows that any visualization for trees 
would be applicable to a search space. 
 
In this paper we evaluate the Sunburst visualization 
as a tool for exploring search spaces.  The Sunburst 
visualization is a proven technique for exploring 



large tree structures.  We use this visualization to 
explore the state space of the popular 8-Puzzle model 
and compare two common heuristics used for 8-
Puzzle with the A* search strategy.   
 
  

 
	  
Figure 2 Small search spaces represented as a 
graph and a tree. 

The N-Puzzle 
Also known as the sliding tile puzzle, the N-Puzzle 
consists of a grid of sliding tiles numbered 1-N with 
the (N+1)th tile removed.  The objective of the 
puzzle is to slide the tiles from some random initial 
state to a goal state. 
 

 
	  
Figure 3 (left) A random state of the 15-Puzzle.  
(right) The goal state of the 15-Puzzle. 

The initial state of the tiles is not simply a random 
permutation of the tiles.  In fact the set of initial 
states that are solvable is exactly half of the total 
permutations of the tiles.  This set is equal to the set 
of even permutations of the tiles.  Solving an N-
Puzzle from a starting state that is an odd permutation 
of the goal state is impossible.  This was proven 
mathematically a few months after the puzzle was 
invented in 1879.  
 
N-Puzzle is a popular model for analyzing algorithms 
used in  shortest path problem solving.  For N-Puzzle 

this means solving the puzzle in the fewest possible 
moves. 
 
Heuristics for 8-Puzzle 
Commonly used heuristics for the N-Puzzle include 
the misplaced tile and Manhattan distance heuristics.  
The misplaced tile heuristic is the sum of misplaced 
tiles in the puzzle at any given state.  The Manhattan 
distance heuristic is the sum of all Manhattan 
distances of each tile.  The Manhattan distance 
heuristic has been proven to perform better than the 
misplaced tile heuristic.  Both heuristics are 
admissible, as they never overestimate the cost to 
reach the goal state from any other state. 
  
A more advanced heuristic, Manhattan pair distance, 
combines the Manhattan distance with a pairing of 
misplaced tiles.  This is guaranteed not to 
overestimate and is more accurate than Manhattan 
distance alone.  For the purposes of this evaluation 
we are concerned with the misplaced tile and 
Manhattan distance heuristics. 
 
Sunburst Visualization 
Sunburst is a space filling visualization that uses a 
radial layout to represent large hierarchical tree 
structures.  The root of the tree is placed at the center 
of the Sunburst and child segments are bound to the 
angle of the parent.  The colors of the segments 
represent one or more dimensions of the data.  The 
size of each segment is strictly a function of the 
layout.  Segments that have children are given 
enough space to fit the children along its perimeter. 

	  
Figure 4 A small Sunburst visualization. 

Experiments have shown that the Sunburst 
visualization is preferred over other space filling 
visualizations, like the TreeMap, because of its 
explicit representation of the tree structure.  



Interactions with Sunburst 
The Sunburst visualization we used for our 
evaluation supported two types of interactions. By 
moving the cursor over a node, the node is 
highlighted and a tooltip window is shown containing 
information about the highlighted node.  Selecting a 
highlighted node transitions the Sunburst 
visualization into “drill down” mode.  An overview 
of the entire tree is presented in the center of the 
canvas and a new Sunburst is constructed 
surrounding the center with the selected node as the 
root. 
 

 
	  
Figure 5 Sunburst in drill down mode 

Approach 
 
Our goal is to evaluate the Sunburst visualization as a 
tool for analyzing search spaces and heuristics.  We 
take the position that search spaces can be 
represented as a tree whereby the Sunburst 
visualization is applicable.  For the purposes of our 
evaluation we have implemented a framework for A* 
search that supports weighting and pluggable 
heuristic functions.  We also developed a basic model 
for the 8-Puzzle and two common heuristics, 
misplaced tile and Manhattan distance. The search 
traces were exported as XML documents that are 
later used as input for the Sunburst visualization tool. 
 
The Sunburst visualization tool we used is based on 
TreeViz, an open source project designed to support 
the generation of visualizations of large tree 
structures.  We made some modifications to TreeViz 
for the purposes of our evaluation (see appendix C). 
 

To generate the search spaces needed for our 
evaluation we expanded the entire 8-Puzzle state 
space using a breadth first expansion from the goal 
state until all of the 181,440 unique states were 
generated.  A state space file was generated for each 
heuristic. These state space files were necessary in 
order to visualize the error in search spaces.  Next, 
we generated a collection of search spaces using 
initial states of varying distances from the goal (see 
figure 6 for the actual states used and their distances 
from the goal through an optimal path).  
 

Initial State Distance from Goal 
023145786 3 
542710863 12 
751364208 22 
647805321 29 
321674850 29 

 
Figure 6 Initial states used in our evaluation.  The 
states are a sequence of digits where each span of 
3 digits represents a row in the puzzle with 0 as 
the blank tile.  The goal state is 123456780. 

The information stored in the XML files for each 
node in the state space consisted of the f(n), g(n) and 
h(n) values as well as the relative time at which the 
node was generated (see appendix B for an example 
state space file). 
 

Evaluation 
 
In our evaluation of the Sunburst visualization we 
were interested in a few of the features of a typical 
search space.  These features include the f-value, h-
value, error and time or f(n), h(n), e(n) and t(n) 
respectively.  The e(n) function is the difference 
between the computed h-value for node n and the 
actual cost to reach the goal from node n.  The t(n) 
function is the time at which node n was generated.  
We used a diverging color scheme in all of the 
visualizations that we generated where green 
represents the lowest value and red represents the 
highest value. 
 
You may refer to appendix A for our complete 
results.  Here we will present the results we thought 
were most relevant to the utility of the Sunburst 
visualization as a tool for exploring search spaces and 
analyzing heuristics.   
 
 
 
 
 



Shape 
We found Sunburst to be most effective at showing 
the shape of a tree.  We compared the shapes of the 
trees generated using the misplaced tile heuristic and 
the Manhattan distance. As expected the Manhattan 
distance heuristic branches less and generates far 
fewer nodes. The pruning power of the superior 
heuristic is evident in the visualizations. 
 

	  
Figure 7 Shape of search space tree with initial 
state 751364208 using misplaced tile heuristic. 

	  

	  
Figure 8 Shape of search space tree with initial 
state 751364208 using Manhattan distance 
heuristic with a weight of 1. 

 

 

The Sunburst was also effective at showing the 
impact that weight has in WA* search. 	  

	  
Figure 9 Shape of the search space tree with initial 
state 751364208 using Manhattan distance 
heuristic with a weight of 2. 

H-Values 
We generated some visualizations of the entire 8-
Puzzle state space to get a sense of the h-value 
distribution as well as the error in computed h-values.  
The Sunburst visualization is effective in showing the 
higher degree of error in the misplaced tile heuristic 
(see figure 11 and 12). 
 

	  
Figure 10 Error in h in the entire 8-Puzzle state 
space using misplaced tile heuristic. 



	  
Figure 11 Error in h in the entire 8-Puzzle state 
space using Manhattan distance. 

With the misplaced tile heuristic we see large bands 
of red and yellow indicating a higher degree of error.  
With the Manhattan distance heuristic we see more 
greens and yellows indicating a lower degree of error 
throughout the state space. Streaks of green that 
stretch from the root of the tree to the fringe can be 
seen with the Manhattan distance heuristic.  This may 
suggest that there is a set of search paths whereby the 
heuristic is more accurate than for other paths.  There 
are no such streaks visible with the misplaced tile 
heuristic. 
 
F-Value 
In visualizing the f-value of an admissible heuristic 
there are two things we expected to see.  First since 
f(n) is nondecreasing we expected to see contours as 
well as  a monotonic color gradient fanning out from 
the initial state. 

	  
Figure 12 Contours and monotonicity in f-values 

The monotonicity is clearly evident in the 
visualizations (see figure 12).  The contours become 
less clear as the trees get larger (see appendix A for 
an example of a larger tree showing f-values). 
 
With WA* we expected to see something different 
since weight can cause a heuristic function to 
overestimate the cost to the goal and potentially 
arrive at a suboptimal solution.  This is evident in the 
visualization as a rippling effect (see figure 13).  
 

	  
Figure 13 Ripple effect caused by overestimation 
when weight is greater than 1 in WA*. 

Time 
The time at which a node is generated is also an 
important feature of a search space.   In our 
evaluation we used Sunburst to compare time with f-
values.  
 

	  
Figure	  14	  	  F-‐Values 



 

	  
Figure	  15	  	  Time 

We expected to see a relationship between the time a 
node was generated and the f-value of the parent 
node.  Nodes whose parents have higher f-values 
should be generated after nodes whose parents have 
lower f-values.  The Sunburst is effective at showing 
this relationship.  However two Sunbursts need to be 
compared side by side.  This is true in general when 
looking at relationships or differences between 
features using Sunburst. 
 

Conclusion 
 
Search spaces generated by heuristic search 
algorithms such as A* can be represented by tree 
structures.  The Sunburst is an effective interactive 
visualization for exploring these search spaces.  It is 
especially effective at showing the shape of a search 
space.  It may also be useful in comparing the quality 
of heuristics and validating the relationships between 
features in the search space. 
 
The Sunburst visualization tool we used was 
restricted to two visual processing channels, color 
and orientation.  Because of this it is not very 
effective in showing more than one dimension of the 
data in a single diagram. 
 

Future Work 
 
Extending Sunburst 
The Sunburst utilizes the orientation and color 
processing channels for visual information.  The size 
channel is reserved as a function of the layout.  This 
leaves animation as a channel that may be used to 

extend the Sunburst to show more dimensions of the 
data in a single diagram.    
 
We may also consider overloading the orientation or 
color channels to make the Sunburst more expressive.  
It is not clear how we might do this.  One possibility 
is to use alpha-blending to fade or merge nodes. 
 
Exploring the Fringe 
The open-list is an important area of study in 
developing search strategies such as A*.  The open-
list, also referred to as the fringe, is the set of nodes 
that is of immediate consideration for expansion 
during a search.  Visualizations of the fringe and how 
it relates to the search space may deepen 
understanding in this area. 
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