
Character and String
Representation

CS520

Department of Computer Science

University of New Hampshire

CDC 6600

• 6-bit character encodings
• i.e. only 64 characters
• Designers were not too concerned

about text processing!

The table is from Assembly Language Programming for
the Control Data 6000 series and the Cyber 70 series by
Grishman.

C Strings

• Usually implemented as a series of ASCII
characters terminated by a null byte (0x00).

• ″abc″ in memory is:

0x00

0x61

0x62

0x63

n

n+1

n+2

n+3

Unicode

• The space of values is divided into 17 planes.

• Plane 0 is the Basic Multilingual Plane (BMP).

– Supports nearly all modern languages.

– Encodings are 0x0000-0xFFFF.

• Planes 1-16 are supplementary planes.

– Supports historic scripts and special symbols.

– Encodings are 0x10000-0x10FFFF.

• Planes are divided into blocks.

Unicode and ASCII

• ASCII is the bottom block in the BMP, known
as the Basic Latin block.

• So ASCII values are embedded “as is” into
Unicode.

• i.e. 'a' is 0x61 in ASCII and 0x0061 in Unicode.

Special Encodings

• The Byte-Order Mark (BOM) is used to signal
endian-ness.

• Has no other meaning (i.e. usually ignored).

• Encoded as 0xFEFF.

• 0xFFFE is a noncharacter.
– Cannot appear in any exchange of Unicode.

• So file can be started with a BOM; the reader can
then know the endian-ness of the file.

• In absence of a BOM, Big Endian is assumed.

Other Noncharacters

• There are a total of 66 noncharacters:

– 0xFFFE and 0xFFFF of the BMP

– 0x1FFFE and 0x1FFFF of plane 1

– 0x2FFFE and 0x2FFFF of plane 2

– etc., up to

– 0x10FFFE and 0x10FFFF of plane 16

– Also 0xFDD0-0xFDEF of the BMP.

UTF: UCS* Transformation Format

• UTF-8
– Encodes Unicode characters in 1-4 bytes.

– ASCII gets encoded as 1 byte.

– Dominant character encoding for the WWW.

• UTF-16
– Encodes BMP characters in 2 bytes

– Encodes non-BMP characters in 4 bytes.

• UTF-32
– Fixed-sized representation of Unicode.

*Universal Character Set.

UTF-8

• Take the Unicode character and throw away the
leading zero bits.*

• Count the remaining number of bits.

• 7 bits: 0xxxxxxx

• 11 bits: 110xxxxx 10xxxxxx

• 16 bits: 1110xxxx 10xxxxxx 10xxxxxx

• 21 bits: 11110xxx 10xxxxxx 10xxxxxx 10xxxxxx

*Overlong encodings are forbidden. Therefore there is a unique UTF-8 encoding for each
Unicode character.

Errors in UTF-8

• Overlong encodings.

• An unexpected continuation byte.

• A start byte not followed by enough continuation
bytes.

• A 4-byte sequence starting with 0xF4 that
decodes to a value greater than 0x10FFFF.

• A sequence that decodes to a noncharacter.

• A sequence that decodes to a value in range
0xD800-0xDFFF.

UTF-16

• 1 UTF-16 code unit (2 8-bit bytes) for each
BMP character.

• 2 UTF-16 code units for each non-BMP
character (4 bytes in total).
– 0x10000 is subtracted from the value, leaving a

20-bit number in the range 0x00000-0xFFFFF.

– The top 10 bits are added to 0xD800 to give the
first code unit, called the lead surrogate.

– The low 10 bits are added to 0xDC00 to give the
second code unit, called the trail surrogate.

Self-synchronizing

• 10 bits express values in the range 0x000-0x3FF.

• Lead surrogates will be in range 0xD800+0x000 to
0xD800+0x3FF (0xD800-0xDBFF).

• Trail surrogates will be in range 0xDC00+0x000 to
0xDC00+0x3FF (0xDC00-0xDFFF).

• Remember: values 0xD800-0xDFFF are not valid
Unicode characters.

• UTF-16 BMP characters can be distinguished from
UTF-16 non-BMP characters.

• So you can tell where the Unicode character
boundaries are in a UTF-16 stream.

UTF-32

• Simply take the 21-bit Unicode value and add
leading zero bits to extend it to 32 bits.

• Byte-order is an issue, like with UTF-16.

