Tl LocKs

S 5290

Dest. oF Comprter Scieme
(Uatv. o7E Ne o /—/ch..Fs[u/’e_

Besic T des

S

171:' _{-[.c /CVC/ 67E COu7lf~—|"ﬁb‘—; (s CK?C:."/‘&J—/'Q Le

4+(~cl) Ll+ /Oc,\k(«) mcc‘cgcsm

/ow/ Athew usc /45

+:\-

<. vse CMPXC.L§ i éusy Wwas)

éc;// YIC/c/ 17r th—,."lL o!ﬂ‘q,o._, /o<..l<" q?r‘f‘fr'
50%—-((AV'—-LCI' o7£— ‘1‘{'(\:5

Tutc | CHMPXCH G

e ————

CMPXCHG r32 m32
J

Lormpale €sX woth 32

{7('6 Ut/
guel et 2F cud store r32 v n32

el
cleer 2F cad /osc/ 32 mto ek,

{

L
/‘1?[((“{6 P e L: u.scc/ w—t‘(\ +l~<. LocCk F/‘c X
—7/-0 M/C, "f_: +o V‘—N:V‘—-"(’Y CCS fel Q—forslc

This provides a "thin" lock via the cmpxchg instruction. —/—A{o. £°C.k. S

Here is the C prototype for the function:
int thinLock({int *lock, int tryCount);

——

The first parameter is the address of the memory location that is
serving as the lock. A zero value in the lock word means the lock
is available. A non-zero value means the lock is locked.

The second parameter is a count for how many attempts should be
made to obtain the lock before giving up and returning 0 (failure).

The function returns 1 if the lock is obtained and 0 otherwise.

There is no assembly language thinUnlock because unlock is done by
simply assigning zero to the word that is the lock.

BB S R e I R T R I e e T T

.text # assemble instructions
.align 4 put start of function on 4-byte boundary

S

.globl thinLock # make function name visible to linker
thinLock:
pushl %ebp save old frame pointer

establish new frame pointer

save ebx since it is callee saved
get first parameter into ebx

put second parameter into ecx

movl %esp, ¥ebp
—np DUSIIL 5EDX

movl 8(%ebp), %ebx
movl 12 (%ebp), %ecx

H o R e

tryAgain:
movl $0, %eax # 0 means lock is available
/}/~ movl $1, %edx # put 1 into lock if it is available
lock # lock the memory bus for next instruction
cmpxchg %edx, (%ebx) # is lock available? (ie (ebx) == eax == ()
je gotLock # if so, done
subl $1, %ecx # if not, decrement counter
je giveUp # if counter > 0, try again
——— jmp tryAgain
giveUp: # eax will be 1 if we branch here
movl $0, %eax # need to return 0 however
jmp exit
gotLock: # eax will be 0 if we branch here
movl $1, %eax # need to return 1 however
exit:
—> popl $ebx # restore ebx
popl $ebp # restore ebp

ret # return eax

