Which entities are relevant to the story?

Pooja H. Oza and Laura Dietz

University of New Hampshire

Overview

- Information is spread across various articles
- Construct a summarized story
- Capture complex relations between articles
- We focus on retrieving relevant entities for a summarized story
- Resembles entity retrieval task but different

In 1939, Martin Kamen and Samuel Ruben of the Radiation Laboratory at Berkeley began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research. They ...

Task

- Input two types of input
 - A short text such as "2020 US presidential elections nominations", "Radiocarbon dating background history" which we call as a **story request**
 - A list of story requests such as ["Radiocarbon dating samples", "Radiocarbon dating background history"], which we define as **multi-story query request**

• Output - a list of relevant entities

• We assume access to a text corpus and a general knowledge base such as Wikipedia

Motivation

- Previous work based on keyword matching or entity attributes entity names, entity types, graph walks
- Previous work focused on high-precision while our work focuses on retrieving entities of varying degree
- Our work uses text based signals to retrieve relevant entities
- We hypothesize that the text surrounding the entity mentions provide a strong indicator about entity relevance

In 1939, Martin Kamen and Samuel Ruben of the Radiation Laboratory at Berkeley began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research. They synthesized ¹⁴C using the laboratory's cyclotron accelerator and soon discovered that the atom's half-life was far longer than had been previously thought. This was followed by a prediction by Serge A. Korff, then employed at the Franklin Institute in **Philadelphia**, that the interaction of **thermal neutrons** with ¹⁴N in the upper atmosphere would create ¹⁴C. It had previously been thought that ¹⁴C would be more likely to be created by **deuterons** interacting with ¹³C. At some time during World War II, Willard Libby, who was then at Berkeley, learned of Korff's research and conceived the idea that it might be possible to use radiocarbon for dating.

Motivation

- The common approach retrieves entities by keyword matching in knowledge base (KG-Entity)
- Our approach is based on pseudo-relevance feedback on entity links in relevant text
 - Retrieve text passages relevant to the query
 - Use occurrence of entities or co-occurrence of two entities
- We argue that the entities that co-occur in relevant text passages, likely have a relevant connection

Claim 1

 Retrieving entities through relevant passage is more effective than knowledge base attributes

In 1939, Martin Kamen and Samuel Ruben of the Radiation Laboratory at Berkeley began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research. They synthesized ¹⁴C using the laboratory's cyclotron accelerator and soon discovered that the atom's half-life was far longer than had been previously thought. This was followed by a prediction by Serge A. Korff, then employed at the Franklin Institute in Philadelphia, that the interaction of thermal neutrons with ¹⁴N in the upper atmosphere would create ¹⁴C. It had previously been thought that ¹⁴C would be more likely to be created by **deuterons** interacting with ¹³C. At some time during World War II, Willard Libby, who was then at Berkeley, learned of Korff's research and conceived the idea that it might be possible to use radiocarbon for dating.

Claim 2

• Relevance through relevant passages is more effective than knowledge base links

In 1939, Martin Kamen and Samuel Ruben of the Radiation Laboratory at Berkeley began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research. They synthesized ¹⁴C using the laboratory's cyclotron accelerator and soon discovered that the atom's half-life was far longer than had been previously thought. This was followed by a prediction by Serge A. Korff, then employed at the Franklin Institute in Philadelphia, that the interaction of thermal neutrons ...

Claim 3

• Co-coupling patterns (bibliographic count, co-coupling count) can be improved by using relevance of shared entities

Link Types

- 1) Relevant Co-occurrence Graph
- 2) Unweighted Link Patterns
- 3) Relevance-weighted Coupling

Relevant Co-occurrence Graph Link Type

- Based on thought experiment that if entities co-occur in the relevant text passages, then a relevant link exists between entities.
- We retrieve the entity-linked text passages and create entity pairs (e_i, e_j). For e.g., (Martin Kamen, Samuel Ruben)

In 1939, Martin Kamen and Samuel Ruben of the Radiation Laboratory at Berkeley began experiments to determine if any of the elements common in organic matter had isotopes with half-lives long enough to be of value in biomedical research. They synthesized ¹⁴C using the laboratory's cyclotron accelerator and soon discovered that the atom's **half-life** was far longer than had been previously thought. This was followed by a prediction by Serge A. Korff, then employed at the Franklin Institute in Philadelphia, that the interaction of thermal neutrons with ¹⁴N in the upper atmosphere would create ¹⁴C. It had previously been thought that ¹⁴C would be more likely to be created by **deuterons** interacting with ¹³C. At some time during World War II, Willard Libby, who was then at Berkeley, learned of Korff's research and conceived the idea that it might be possible to use radiocarbon for dating.

Relevant Co-occurrence Graph Indicators

- 1. **Co-occ Relevance:** reciprocal rank of co-occurring entities
- 2. Co-occ Count: frequency of co-occurring entities
- **3. Mention Freq:** frequency of each entity in the text passages

Unweighted Link Patterns Link Type

- Based on Knowledge Base links i.e. inlinks and outlinks of Wikipedia
- We determine whether link exists between the entity pairs (e_i, e_j)

Unweighted Link Patterns Indicators

Direct links: For entity pair (e_i, e_j)

- **1. Outlinks:** link from e_i to e_i
- **2.** Inlinks: link from e_i to e_i
- **3. Bidirectional:** outlink and inlink between e_i and e_i
- 4. Undirected: outlink or inlink between e_i and e_j

Unweighted Link Patterns Indicators

Coupling measures: For entity pair (e_i, e_j)

- Bibliographic: shared outlinks between e_i and e_i
- 2. Co-coupling: common inlinks between e, and e

Relevance-weighted Coupling Link Type

- Hybrid of knowledge base links patterns approach and relevance-based approach
- Scores of ranked knowledge base entries is used as relevance factor

Relevance-weighted Coupling Indicators

- 1. Bibliographic Relevance: shared outlinks weighted by relevance score of ranked knowledge base entries
- 2. Co-coupling Relevance: shared inlinks weighted by relevance score of ranked knowledge base entries

Entity Ranking

- Final entity e_i score for each indicator (except outlinks, inlinks, bidirectional), accumulate the scores of all entity pairs in which the entity e_i is present
- Learning-to-rank framework to study the combined effect of the indicators
- Top 4 best performing indicators when combined performs best

Evaluation

- TREC Complex Answer Retrieval Y1 benchmark
- 3 evaluation metrics
 - Mean Average Precision (MAP)
 - Rprecision (Rprec)
 - **F1**

Queries: Story request

- Story Requests
 - "2020 US presidential elections nominations"
 - "Radiocarbon dating samples"
 - "Radiocarbon dating background history"
- 1952 story requests

• Retrieving entities through relevant passage is more effective than knowledge base attributes

Indicators	МАР	Rprec	F1
Co-occ Relevance	0.14 ±0.005	0.14 ±0.005	0.06 ±0.001
Co-occ Count	0.09 ±0.003	0.10 ±0.003	0.06 ±0.001
Mention-Freq	0.11 ±0.003	0.11 ±0.003	0.07 ±0.001
KG-Entity	0.03 ±0.002	0.03 ±0.002	0.01 ±0.000

• Relevance through relevant passages is more effective than knowledge base links

Indicators	МАР	Rprec	F1
Co-occ Relevance	0.14 ±0.005	0.14 ±0.005	0.06 ±0.001
Co-occ Count	0.09 ±0.003	0.10 ±0.003	0.06 ±0.001
Mention-Freq	0.11 ±0.003	0.11 ±0.003	0.07 ±0.001
Undirected	0.07 ±0.002	0.08 ±0.003	0.06 ±0.001
Biblio Count	0.07 ±0.002	0.07 ±0.002	0.06 ±0.001
Co-coupling Count	0.03 ±0.001	0.03 ±0.001	0.05 ±0.001

• Co-coupling patterns (bibliographic count, co-coupling count) can be improved by using relevance of shared entities

Indicators	МАР	Rprec	F1
Biblio Count	0.07 ±0.002	0.07 ±0.002	0.06 ±0.001
Co-coupling Count	0.03 ±0.001	0.03 ±0.001	0.05 ±0.001
Biblio Relevance	0.05 ±0.002	0.04 ±0.002	0.05 ±0.001
Co-coupling Relevance	0.07 ±0.002	0.07 ±0.003	0.06 ±0.001

Queries: Multi-story query request

- Multi-story Query Requests
 - Consists of multiple story requests connected by a larger theme
 - Example: "Radiocarbon dating"
 - Sub-stories: ["Radiocarbon dating samples", "Radiocarbon dating background history"]
 - Results are combination of results of multiple story requests
- 132 multi-story query requests

• Retrieving entities through relevant passage is more effective than knowledge base attributes

Indicators	MAP	Rprec	F1
Co-occ Relevance	0.21 ±0.011	0.30 ±0.010	0.31 ±0.009
Co-occ Count	0.16 ±0.008	0.26 ±0.009	0.27 ±0.008
Mention-Freq	0.19 ±0.008	0.30 ±0.008	0.31 ±0.008
KG-Entity	0.01 ±0.002	0.05 ±0.003	0.04 ±0.003

• Relevance through relevant passages is more effective than knowledge base links

Indicators	МАР	Rprec	F1
Co-occ Relevance	0.21 ±0.011	0.30 ±0.010	0.31 ±0.009
Co-occ Count	0.16 ±0.008	0.26 ±0.009	0.27 ±0.008
Mention-Freq	0.19 ±0.008	0.30 ±0.008	0.31 ±0.008
Undirected	0.16 ±0.007	0.27 ±0.007	0.28 ±0.008
Biblio Count	0.14 ±0.006	0.25 ±0.008	0.27 ±0.007
Co-coupling Count	0.08 ±0.005	0.18 ±0.007	0.21 ±0.007

• Co-coupling patterns (bibliographic count, co-coupling count) can be improved by using relevance of shared entities

Indicators	MAP	Rprec	F1
Biblio Count	0.14 ±0.006	0.25 ±0.008	0.27 ±0.007
Co-coupling Count	0.08 ±0.005	0.18 ±0.007	0.21 ±0.007
Biblio Relevance	0.10 ±0.006	0.21 ±0.007	0.23 ±0.008
Co-coupling Relevance	0.13 ±0.006	0.23 ±0.008	0.24 ±0.008

Conclusion

- Relevant text proves to be a strong indicator between 80% and 30% than the knowledge base links
- Relevant text based signals are more effective for retrieval of relevant entities

NSF CAREER, Grant No. 1846017

Thank you!