Final Overview
 Introduction to ML

Marek Petrik

4/25/2017

This Course: Introduction to Machine Learning

- Build a foundation for practice and research in ML
- Basic machine learning concepts: max likelihood, cross validation
- Fundamental machine learning techniques: regression, model-selection, deep learning
- Educational goals:

1. How to apply basic methods
2. Reveal what happens inside
3. What are the pitfalls
4. Expand understanding of linear algebra, statistics, and optimization

What is Machine Learning

- Discover unknown function f :

$$
Y=f(X)
$$

- $X=$ set of features, or inputs
- $Y=$ target, or response

Sales $=f($ TV, Radio, Newspaper $)$

Statistical View of Machine Learning

- Probability space Ω : Set of all adults
- Random variable: $X(\omega)=\mathbb{R}$: Years of education
- Random variable: $Y(\omega)=\mathbb{R}$: Salary

How Good are Predictions?

- Learned function \hat{f}
- Test data: $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots$
- Mean Squared Error (MSE):

$$
\mathrm{MSE}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-\hat{f}\left(x_{i}\right)\right)^{2}
$$

- This is the estimate of:

$$
\operatorname{MSE}=\mathbb{E}\left[(Y-\hat{f}(X))^{2}\right]=\frac{1}{|\Omega|} \sum_{\omega \in \Omega}(Y(\omega)-\hat{f}(X(\omega)))^{2}
$$

- Important: Samples x_{i} are i.i.d.

KNN: K-Nearest Neighbors

- Idea: Use similar training points when making predictions

- Non-parametric method (unlike regression)

Bias-Variance Decomposition

$$
Y=f(X)+\epsilon
$$

Mean Squared Error can be decomposed as:

$$
\text { MSE }=\mathbb{E}(Y-\hat{f}(X))^{2}=\underbrace{\operatorname{Var}(\hat{f}(X))}_{\text {Variance }}+\underbrace{(\mathbb{E}(\hat{f}(X)))^{2}}_{\text {Bias }}+\operatorname{Var}(\epsilon)
$$

- Bias: How well would method work with infinite data
- Variance: How much does output change with different data sets

R^{2} Statistic

$$
R^{2}=1-\frac{\mathrm{RSS}}{\mathrm{TSS}}=1-\frac{\sum_{i=1}^{n}\left(y_{i}-\hat{y}_{i}\right)^{2}}{\sum_{i=1}^{n}\left(y_{i}-\bar{y}\right)^{2}}
$$

- RSS - residual sum of squares, TSS - total sum of squares
- R^{2} measures the goodness of the fit as a proportion
- Proportion of data variance explained by the model
- Extreme values:

0 : Model does not explain data
1: Model explains data perfectly

Correlation Coefficient

- Measures dependence between two random variables X and Y

$$
r=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

- Correlation coefficient r is between $[-1,1]$

0: Variables are not related
1: Variables are perfectly related (same)
-1 : Variables are negatively related (different)

Correlation Coefficient

- Measures dependence between two random variables X and Y

$$
r=\frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}(X)} \sqrt{\operatorname{Var}(Y)}}
$$

- Correlation coefficient r is between $[-1,1]$

0: Variables are not related
1: Variables are perfectly related (same)
-1 : Variables are negatively related (different)

- $R^{2}=r^{2}$

Qualitative Features: Many Values The Right Way

- Predict salary as a function of state
- Feature state ${ }_{i} \in\{\mathrm{MA}, \mathrm{NH}, \mathrm{ME}\}$

Qualitative Features: Many Values The Right Way

- Predict salary as a function of state
- Feature state ${ }_{i} \in\{\mathrm{MA}, \mathrm{NH}, \mathrm{ME}\}$
- Introduce 2 indicator variables x_{i}, z_{i} :

$$
x_{i}=\left\{\begin{array}{ll}
0 & \text { if } \text { state }_{i}=\mathrm{MA} \\
1 & \text { if } \operatorname{state}_{i} \neq \mathrm{MA}
\end{array} \quad z_{i}= \begin{cases}0 & \text { if } \text { state }_{i}=\mathrm{NH} \\
1 & \text { if } \text { state }_{i} \neq \mathrm{NH}\end{cases}\right.
$$

- Predict salary as:

$$
\text { salary }=\beta_{0}+\beta_{1} \times x_{i}+\beta_{2} \times z_{i}= \begin{cases}\beta_{0}+\beta_{1} & \text { if } \text { state }_{i}=\mathrm{MA} \\ \beta_{0}+\beta_{2} & \text { if } \text { state }_{i}=\mathrm{NH} \\ \beta_{0} & \text { if state } \\ = & \mathrm{ME}\end{cases}
$$

Qualitative Features: Many Values The Right Way

- Predict salary as a function of state
- Feature state ${ }_{i} \in\{\mathrm{MA}, \mathrm{NH}, \mathrm{ME}\}$
- Introduce 2 indicator variables x_{i}, z_{i} :
- Predict salary as:

$$
\text { salary }=\beta_{0}+\beta_{1} \times x_{i}+\beta_{2} \times z_{i}= \begin{cases}\beta_{0}+\beta_{1} & \text { if } \text { state }_{i}=\mathrm{MA} \\ \beta_{0}+\beta_{2} & \text { if } \text { state }_{i}=\mathrm{NH} \\ \beta_{0} & \text { if state } \\ i & =\mathrm{ME}\end{cases}
$$

- Need an indicator variable for ME? Why? hint: linear independence

Outlier Data Points

- Data point that is far away from others
- Measurement failure, sensor fails, missing data point
- Can seriously influence prediction quality

Points with High Leverage

- Points with unusual value of x_{i}
- Single data point can have significant impact on prediction
- R and other packages can compute leverages of data points

- Good to remove points with high leverage and residual

Best Subset Selection

- Want to find a subset of p features
- The subset should be small and predict well
- Example: credit \sim rating + income + student + limit
$\mathcal{M}_{0} \leftarrow$ null model (no features);
for $k=1,2, \ldots, p$ do
Fit all $\binom{p}{k}$ models that contain k features;
$\mathcal{M}_{k} \leftarrow$ best of $\binom{p}{k}$ models according to a metric (CV error, R^{2}, etc)
end
return Best of $\mathcal{M}_{0}, \mathcal{M}_{1}, \ldots, \mathcal{M}_{p}$ according to metric above Algorithm 1: Best Subset Selection

Regularization

- Ridge regression (parameter λ), ℓ_{2} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j} \beta_{j}^{2}= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j} \beta_{j}^{2}
\end{gathered}
$$

- Lasso (parameter λ), ℓ_{1} penalty

$$
\begin{gathered}
\min _{\beta} \operatorname{RSS}(\beta)+\lambda \sum_{j}\left|\beta_{j}\right|= \\
\min _{\beta} \sum_{i=1}^{n}\left(y_{i}-\beta_{0}-\sum_{j=1}^{p} \beta_{j} x_{i j}\right)^{2}+\lambda \sum_{j}\left|\beta_{j}\right|
\end{gathered}
$$

- Approximations to the ℓ_{0} solution

Logistic Regression

- Predict probability of a class: $p(X)$
- Example: p (balance) probability of default for person with balance
- Linear regression:

$$
p(X)=\beta_{0}+\beta_{1}
$$

- logistic regression:

$$
p(X)=\frac{e^{\beta_{0}+\beta_{1} X}}{1+e^{\beta_{0}+\beta_{1} X}}
$$

- the same as:

$$
\log \left(\frac{p(X)}{1-p(X)}\right)=\beta_{0}+\beta_{1} X
$$

- Odds: $p(X) / 1-p(X)$

Logistic Function

$$
y=\frac{e^{x}}{1+e^{x}}
$$

Logit Function

$$
\log \left(\frac{p(X)}{1-p(X)}\right)
$$

Estimating Coefficients: Maximum Likelihood

- Likelihood: Probability that data is generated from a model

$$
\ell(\text { model })=\operatorname{Pr}[\text { data } \mid \text { model }]
$$

- Find the most likely model:

$$
\max _{\text {model }} \ell(\text { model })=\max _{\text {model }} \operatorname{Pr}[\text { data } \mid \text { model }]
$$

- Likelihood function is difficult to maximize
- Transform it using log (strictly increasing)

$$
\max _{\text {model }} \log \ell(\text { model })
$$

- Strictly increasing transformation does not change maximum

Discriminative vs Generative Models

- Discriminative models
- Estimate conditional models $\operatorname{Pr}[Y \mid X]$
- Linear regression
- Logistic regression
- Generative models
- Estimate joint probability $\operatorname{Pr}[Y, X]=\operatorname{Pr}[Y \mid X] \operatorname{Pr}[X]$
- Estimates not only probability of labels but also the features
- Once model is fit, can be used to generate data
- LDA, QDA, Naive Bayes

LDA: Linear Discriminant Analysis

- Generative model: capture probability of predictors for each label

- Predict:

LDA: Linear Discriminant Analysis

- Generative model: capture probability of predictors for each label

- Predict:

1. $\operatorname{Pr}[$ balance \mid default $=$ yes $]$ and $\operatorname{Pr}[$ default $=$ yes $]$

LDA: Linear Discriminant Analysis

- Generative model: capture probability of predictors for each label

- Predict:

1. $\operatorname{Pr}[$ balance \mid default $=$ yes $]$ and $\operatorname{Pr}[$ default $=y e s]$
2. $\operatorname{Pr}[$ balance \mid default $=$ no $]$ and $\operatorname{Pr}[$ default $=\mathrm{no}]$

LDA: Linear Discriminant Analysis

- Generative model: capture probability of predictors for each label

- Predict:

1. $\operatorname{Pr}[$ balance \mid default $=$ yes $]$ and $\operatorname{Pr}[$ default $=y e s]$
2. $\operatorname{Pr}[$ balance \mid default $=$ no $]$ and $\operatorname{Pr}[$ default $=\mathrm{no}]$

- Classes are normal: $\operatorname{Pr}[$ balance \mid default $=$ yes $]$

QDA: Quadratic Discriminant Analysis

- Generalizes LDA
- LDA: Class variances $\Sigma_{k}=\Sigma$ are the same
- QDA: Class variances Σ_{k} can differ

QDA: Quadratic Discriminant Analysis

- Generalizes LDA
- LDA: Class variances $\Sigma_{k}=\Sigma$ are the same
- QDA: Class variances Σ_{k} can differ
- LDA or QDA has smaller training error on the same data?

QDA: Quadratic Discriminant Analysis

- Generalizes LDA
- LDA: Class variances $\Sigma_{k}=\Sigma$ are the same
- QDA: Class variances Σ_{k} can differ
- LDA or QDA has smaller training error on the same data?
- What about the test error?

QDA: Quadratic Discriminant Analysis

Naive Bayes

- Simple Bayes net classification

- With normal distribution over features X_{1}, \ldots, X_{k} special case of QDA with diagonal Σ
- Generalizes to non-Normal distributions and discrete variables
- More on it later ...

Maximum Margin Hyperplane

Introducing Slack Variables

- Maximum margin classifier

$$
\begin{array}{ll}
\max _{\beta, M} & M \\
\text { s.t. } & y_{i}\left(\beta^{\top} x_{i}\right) \geq M \\
& \|\beta\|_{2}=1
\end{array}
$$

- Support Vector Classifier a.k.a Linear SVM

\[

\]

- Slack variables: ϵ
- Parameter: C

Introducing Slack Variables

- Maximum margin classifier

\[

\]

- Support Vector Classifier a.k.a Linear SVM

\[

\]

- Slack variables: ϵ
- Parameter: C What if $C=0$?

Kernelized SVM

- Dual Quadratic Program (usually max-min, not here)

$$
\begin{array}{ll}
\max _{\alpha \geq 0} & \sum_{l=1}^{M} \alpha_{l}-\frac{1}{2} \sum_{j, k=1}^{M} \alpha_{j} \alpha_{k} y_{j} y_{k} k\left(x_{j}, x_{k}\right) \\
\text { s.t. } & \sum_{l=1}^{M} \alpha_{l} y_{l}=0
\end{array}
$$

- Representer theorem: (classification test):

$$
f(z)=\sum_{l=1}^{M} \alpha_{l} y_{l} k\left(z, x_{l}\right)>0
$$

Kernels

- Polynomial kernel

$$
k\left(x_{1}, x_{2}\right)=\left(1+x_{1}^{\top} x_{2}\right)^{d}
$$

- Radial kernel

$$
k\left(x_{1}, x_{2}\right)=\exp \left(-\gamma\left\|x_{1}-x_{2}\right\|_{2}^{2}\right)
$$

- Many many more

Polynomial and Radial Kernels

Regression Trees

- Predict Baseball Salary based on Years played and Hits
- Example:

CART: Recursive Binary Splitting

- Greedy top-to-bottom approach
- Recursively divide regions to minimize RSS

$$
\sum_{x_{i} \in R_{1}}\left(y_{i}-\bar{y}_{1}\right)^{2}+\sum_{x_{i} \in R_{2}}\left(y_{i}-\bar{y}_{2}\right)^{2}
$$

- Prune tree

Trees vs. KNN

- Trees do not require a distance metric
- Trees work well with categorical predictors
- Trees work well in large dimensions
- KNN are better in low-dimensional problems with complex decision boundaries

Bagging

- Stands for "Bootstrap Aggregating"
- Construct multiple bootstrapped training sets:

$$
T_{1}, T_{2}, \ldots, T_{B}
$$

- Fit a tree to each one:

$$
\hat{f}_{1}, \hat{f}_{2}, \ldots, \hat{f}_{B}
$$

- Make predictions by averaging individual tree predictions

$$
\hat{f}(x)=\frac{1}{B} \sum_{b=1}^{B} \hat{f}_{b}(x)
$$

- Large values of B are not likely to overfit, $B \approx 100$ is a good choice

Random Forests

- Many trees in bagging will be similar
- Algorithms choose the same features to split on
- Random forests help to address similarity:
- At each split, choose only from m randomly sampled features
- Good empirical choice is $m=\sqrt{p}$

Gradient Boosting (Regression)

- Boosting uses all of data, not a random subset (usually)
- Also builds trees $\hat{f}_{1}, \hat{f}_{2}, \ldots$
- and weights $\lambda_{1}, \lambda_{2}, \ldots$
- Combined prediction:

$$
\hat{f}(x)=\sum_{i} \lambda_{i} \hat{f}_{i}(x)
$$

- Assume we have $1 \ldots m$ trees and weights, next best tree?

Gradient Boosting (Regression)

- Just use gradient descent
- Objective is to minimize RSS (1/2):

$$
\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-f\left(x_{i}\right)\right)^{2}
$$

- Objective with the new tree $m+1$:

$$
\frac{1}{2} \sum_{i=1}^{n}\left(y_{i}-\sum_{j=1}^{m} \hat{f}_{j}\left(x_{i}\right)-\hat{f}_{m+1}\left(x_{i}\right)\right)^{2}
$$

- Greatest reduction in RSS: gradient

$$
y_{i}-\sum_{j=1}^{m} \hat{f}_{j}\left(x_{i}\right) \approx \hat{f}_{m+1}\left(x_{i}\right)
$$

ROC Curve

Confusion matrix
Reality

	Positive	Negative	
Predicted	Positive	True Positive	False Positive
	Negative	False Negative	True Negative

ROC Curve

Area Under ROC Curve

ROC Curve

- Larger area is better
- Many other ways to measure classifier performance, like F_{1}

Evaluation Method 1: Validation Set

- Just evaluate how well the method works on the test set
- Randomly split data to:

1. Training set: about half of all data
2. Validation set (AKA hold-out set): remaining half

Evaluation Method 1: Validation Set

- Just evaluate how well the method works on the test set
- Randomly split data to:

1. Training set: about half of all data
2. Validation set (AKA hold-out set): remaining half
\qquad
123

- Choose the number of features/representation based on minimizing error on validation set

Evaluation Method 2: Leave-one-out

- Addresses problems with validation set
- Split the data set into 2 parts:

1. Training: Size $n-1$
2. Validation: Size 1

- Repeat n times: to get n learning problems

123	n
123	n
123	n
123	n

Evaluation Method 3: k-fold Cross-validation

- Hybrid between validation set and LOO
- Split training set into k subsets

1. Training set: $n-n / k$
2. Test set: n / k

- k learning problems

123	n
11765	47
11765	47
11765	47
11765	47
11765	47

- Cross-validation error:

$$
\mathrm{CV}_{(k)}=\frac{1}{k} \sum_{i=1}^{k} \mathrm{MSE}_{i}
$$

Bootstrap

- Goal: Understand the confidence in learned parameters
- Most useful in inference
- How confident are we in learned values of β :

$$
\mathrm{mpg}=\beta_{0}+\beta_{1} \text { power }
$$

Bootstrap

- Goal: Understand the confidence in learned parameters
- Most useful in inference
- How confident are we in learned values of β :

$$
\mathrm{mpg}=\beta_{0}+\beta_{1} \text { power }
$$

- Approach: Run learning algorithm multiple times with different data sets:

Bootstrap

- Goal: Understand the confidence in learned parameters
- Most useful in inference
- How confident are we in learned values of β :

$$
\mathrm{mpg}=\beta_{0}+\beta_{1} \text { power }
$$

- Approach: Run learning algorithm multiple times with different data sets:
- Create a new data-set by sampling with replacement from the original one

Principal Component Analysis

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

Principal Component Analysis

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

- Is this linear?

Principal Component Analysis

- 1st Principal Component: Direction with the largest variance

$$
Z_{1}=0.839 \times(\mathrm{pop}-\overline{\mathrm{pop}})+0.544 \times(\mathrm{ad}-\overline{\mathrm{ad}})
$$

- Is this linear? Yes, after mean centering.

K-Means Algorithm

Heuristic solution to the minimization problem

1. Randomly assign cluster numbers to observations
2. Iterate while clusters change
2.1 For each cluster, compute the centroid
2.2 Assign each observation to the closest cluster

Note that:

$$
\frac{1}{\left|C_{k}\right|} \sum_{i, i^{\prime} \in C_{k}} \sum_{j=1}^{p}\left(x_{i j}-x_{i^{\prime} j}\right)^{2}=2 \sum_{i, i^{\prime} \in C_{k}} \sum_{j=1}^{p}\left(x_{i j}-\bar{x}_{k j}\right)^{2}
$$

K-Means Illustration

Data

Iteration 1, Step 2b

Step 1

Iteration 2, Step 2a

Iteration 1, Step 2a

Final Results

Dendrogram: Similarity Tree

What Next?

- This course: How to use machine learning. More tools:
- Gaussian processes
- Time series models
- Domain specific models (e.g., natural language processing)

What Next?

- This course: How to use machine learning. More tools:
- Gaussian processes
- Time series models
- Domain specific models (e.g., natural language processing)
- Doing ML Research
- Musts: Linear algebra, statistics, convex optimization
- Important: Probably Approximately Correct Learning

