Probabilistic Machine Learning Bayesian Nets, MCMC, and more

Marek Petrik

4/18/2017

Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10.

Conditional Independence

- Independent random variables

$$
\mathbb{P}[X, Y]=\mathbb{P}[X] \mathbb{P}[Y]
$$

- Convenient, but not true often enough

Conditional Independence

- Independent random variables

$$
\mathbb{P}[X, Y]=\mathbb{P}[X] \mathbb{P}[Y]
$$

- Convenient, but not true often enough
- Conditional independence

$$
X \perp Y \mid Z \Leftrightarrow \mathbb{P}[X, Y \mid Z]=\mathbb{P}[X \mid Z] \mathbb{P}[Y \mid Z]
$$

- Use conditional independence in machine learning

Dependent but Conditionally Independent

Events with a possibly biased coin:

1. X : Your first coin flip is heads
2. Y : Your second flip is heads
3. Z : Coin is biased

Dependent but Conditionally Independent

Events with a possibly biased coin:

1. X : Your first coin flip is heads
2. Y : Your second flip is heads
3. Z : Coin is biased

- X and Y are not independent
- X and Y are independent given Z

Independent but Conditionally Dependent

Is this possible?

Independent but Conditionally Dependent

Is this possible? Yes! Events with an unbiased coin:

1. X : Your first coin flip is heads
2. Y : Your second flip is heads
3. Z : The coin flips are the same

Independent but Conditionally Dependent

Is this possible? Yes! Events with an unbiased coin:

1. X : Your first coin flip is heads
2. Y : Your second flip is heads
3. Z : The coin flips are the same

- X and Y are independent
- X and Y are not independent given Z

Conditional Independence in Machine Learning

- Linear regression

Conditional Independence in Machine Learning

- Linear regression
- LDA

Conditional Independence in Machine Learning

- Linear regression
- LDA
- Naive Bayes

Directed Graphical Models

- Represent complex structure of conditional independence

Directed Graphical Models

- Represent complex structure of conditional independence
- Node is independent of all predecessors conditional on parent value

$$
x_{s} \perp x_{p r e d(s) \backslash p a(s)} \mid x_{p a(s)}
$$

Undirected Graphical Models

- Another (different) representation of conditional independence

- Markov Random Fields

Naive Bayes Model

Closely related to QDA and LDA

Naive Bayes Model

- Chain rule

$$
\mathbb{P}\left[x_{1}, x_{2}, x_{3}\right]=\mathbb{P}\left[x_{1}\right] \mathbb{P}\left[x_{2} \mid x_{1}\right] \mathbb{P}\left[x_{3} \mid x_{1}, x_{2}\right]
$$

- Probability

$$
\mathbb{P}[x, y]=\mathbb{P}[y] \prod_{j=1}^{D} \mathbb{P}\left[x_{j} \mid y\right]
$$

Why Bother with Conditional Independence?

Why Bother with Conditional Independence?

- Reduces number of parameters

Why Bother with Conditional Independence?

- Reduces number of parameters
- Reduces bias or variance?

Markov Chain

- 1st order Markov chain:

- 2nd order Markov chain:

Uses of Markov Chains

- Time series prediction
- Simulation of stochastic systems
- Inference in Bayesian nets and models
- Many others ...

Hidden Markov Models

Used for:

- Speech and language recognition
- Time series prediction
- Kalman filter: version with normal distributions used in GPS's

Inference

- Inference of hidden variables (y)

$$
\mathbb{P}\left[y \mid x_{v}, \theta\right]=\frac{\mathbb{P}\left[y, x_{v} \mid \theta\right]}{\mathbb{P}\left[x_{v} \mid \theta\right]}
$$

- Eliminating nuisance variables (e.g. x_{1} is not observed)

$$
\mathbb{P}\left[y \mid x_{2}, \theta\right]=\sum_{x_{1}} \mathbb{P}\left[y, x_{1} \mid x_{2}, \theta\right]
$$

- What is inference in linear regression?

Learning

- Computing conditional probabilities θ
- Approaches:

1. Maximum A Posteriori (MAP)

$$
\arg \max _{\theta} \log \mathbb{P}[\theta \mid x]=\arg \max _{\theta}(\log \mathbb{P}[x \mid \theta]+\log \mathbb{P}[\theta])
$$

Learning

- Computing conditional probabilities θ
- Approaches:

1. Maximum A Posteriori (MAP)

$$
\arg \max _{\theta} \log \mathbb{P}[\theta \mid x]=\arg \max _{\theta}(\log \mathbb{P}[x \mid \theta]+\log \mathbb{P}[\theta])
$$

2. Inference!

- Infer distribution of θ given x
- Return mode, median, mean, or anything appropriate

Learning

- Computing conditional probabilities θ
- Approaches:

1. Maximum A Posteriori (MAP)

$$
\arg \max _{\theta} \log \mathbb{P}[\theta \mid x]=\arg \max _{\theta}(\log \mathbb{P}[x \mid \theta]+\log \mathbb{P}[\theta])
$$

2. Inference!

- Infer distribution of θ given x
- Return mode, median, mean, or anything appropriate
- Fixed effects vs random effects (mixed effects models)

Inference in Practice

- Precise inference is often impossible
- Variational inference: approximate models
- Markov Chain Monte Carlo (MCMC):
- Gibbs samples
- Metropolis Hastings
- Others

Probabilistic Modeling Languages

- Simple framework to describe a Bayesian model
- Inference with MCMC and parameter search
- Popular frameworks:
- JAGS
- BUGS, WinBUGS, OpenBUGS
- Stan
- Examples:
- Linear regression
- Ridge regression
- Lasso

