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2. Y : Your second flip is heads

3. Z : Coin is biased

I X and Y are not independent
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Directed Graphical Models
I Represent complex structure of conditional independence

I Node is independent of all predecessors conditional on parent
value

xs ⊥ xpred(s)\pa(s) | xpa(s)
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Undirected Graphical Models

I Another (di�erent) representation of conditional independence

I Markov Random Fields



Naive Bayes Model

Closely related to QDA and LDA



Naive Bayes Model

I Chain rule

P[x1, x2, x3] = P[x1]P[x2|x1]P[x3|x1, x2]

I Probability

P[x, y] = P[y]
D∏
j=1

P[xj |y]



Why Bother with Conditional Independence?

I Reduces number of parameters

I Reduces bias or variance?
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Markov Chain

I 1st order Markov chain:

I 2nd order Markov chain:



Uses of Markov Chains

I Time series prediction
I Simulation of stochastic systems
I Inference in Bayesian nets and models
I Many others . . .



Hidden Markov Models

Used for:
I Speech and language recognition
I Time series prediction
I Kalman filter: version with normal distributions used in GPS’s



Inference

I Inference of hidden variables (y)

P[y|xv, θ] =
P[y, xv|θ]
P[xv|θ]

I Eliminating nuisance variables (e.g. x1 is not observed)

P[y|x2, θ] =
∑
x1

P[y, x1|x2, θ]

I What is inference in linear regression?



Learning

I Computing conditional probabilities θ
I Approaches:

1. Maximum A Posteriori (MAP)

argmax
θ

logP[θ|x] = argmax
θ

(logP[x|θ] + logP[θ])

2. Inference!
I Infer distribution of θ given x
I Return mode, median, mean, or anything appropriate

I Fixed e�ects vs random e�ects (mixed e�ects models)
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Inference in Practice

I Precise inference is o�en impossible
I Variational inference: approximate models
I Markov Chain Monte Carlo (MCMC):

I Gibbs samples
I Metropolis Hastings
I Others



Probabilistic Modeling Languages

I Simple framework to describe a Bayesian model
I Inference with MCMC and parameter search
I Popular frameworks:

I JAGS
I BUGS, WinBUGS, OpenBUGS
I Stan

I Examples:
I Linear regression
I Ridge regression
I Lasso


