Probabilistic Machine Learning Bayesian Nets, MCMC, and more

Marek Petrik

4/18/2017

Based on: P. Murphy, K. (2012). Machine Learning: A Probabilistic Perspective. Chapter 10.

Conditional Independence

Independent random variables

 $\mathbb{P}[X,Y]=\mathbb{P}[X]\mathbb{P}[Y]$

Convenient, but not true often enough

Conditional Independence

Independent random variables

$$\mathbb{P}[X,Y] = \mathbb{P}[X]\mathbb{P}[Y]$$

- Convenient, but not true often enough
- Conditional independence

$$X \bot Y | Z \Leftrightarrow \mathbb{P}[X, Y | Z] = \mathbb{P}[X | Z] \mathbb{P}[Y | Z]$$

Use conditional independence in machine learning

Dependent but Conditionally Independent

Events with a possibly biased coin:

- 1. X: Your first coin flip is heads
- 2. Y: Your second flip is heads
- 3. Z: Coin is biased

Dependent but Conditionally Independent

Events with a possibly biased coin:

- 1. X: Your first coin flip is heads
- 2. Y: Your second flip is heads
- 3. Z: Coin is biased

- X and Y are not independent
- X and Y are independent given Z

Independent but Conditionally Dependent

Is this possible?

Independent but Conditionally Dependent

Is this possible? Yes! Events with an unbiased coin:

- 1. X: Your first coin flip is heads
- 2. Y: Your second flip is heads
- 3. Z: The coin flips are the same

Independent but Conditionally Dependent

Is this possible? Yes! Events with an unbiased coin:

- 1. X: Your first coin flip is heads
- 2. Y: Your second flip is heads
- 3. Z: The coin flips are the same

- X and Y are independent
- X and Y are not independent given Z

Conditional Independence in Machine Learning

Linear regression

Conditional Independence in Machine Learning

Linear regression

Conditional Independence in Machine Learning

Linear regression

Naive Bayes

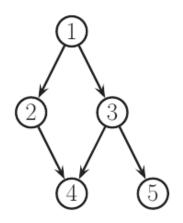
Directed Graphical Models

Represent complex structure of conditional independence

Directed Graphical Models

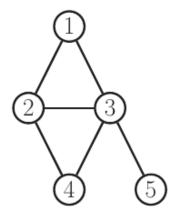
- Represent complex structure of conditional independence
- Node is independent of all predecessors conditional on parent value

$$x_s \perp x_{pred(s) \setminus pa(s)} \mid x_{pa(s)}$$



Undirected Graphical Models

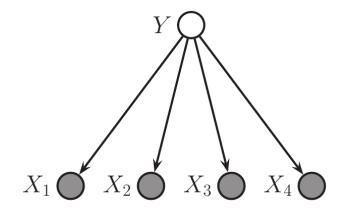
Another (different) representation of conditional independence



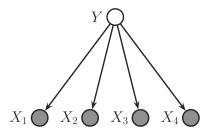
Markov Random Fields

Naive Bayes Model

Closely related to QDA and LDA



Naive Bayes Model



Chain rule

$$\mathbb{P}[x_1, x_2, x_3] = \mathbb{P}[x_1]\mathbb{P}[x_2|x_1]\mathbb{P}[x_3|x_1, x_2]$$

Probability

$$\mathbb{P}[x,y] = \mathbb{P}[y] \prod_{j=1}^{D} \mathbb{P}[x_j|y]$$

Why Bother with Conditional Independence?

Why Bother with Conditional Independence?

Reduces number of parameters

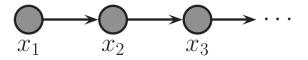
Why Bother with Conditional Independence?

Reduces number of parameters

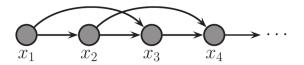
Reduces bias or variance?

Markov Chain

Ist order Markov chain:



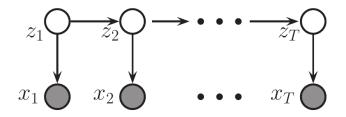
2nd order Markov chain:



Uses of Markov Chains

- Time series prediction
- Simulation of stochastic systems
- Inference in Bayesian nets and models
- Many others ...

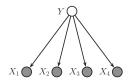
Hidden Markov Models



Used for:

- Speech and language recognition
- Time series prediction
- Kalman filter: version with normal distributions used in GPS's

Inference



Inference of hidden variables (y)

$$\mathbb{P}[y|x_v,\theta] = \frac{\mathbb{P}[y,x_v|\theta]}{\mathbb{P}[x_v|\theta]}$$

• Eliminating <u>nuisance</u> variables (e.g. x_1 is not observed)

$$\mathbb{P}[y|x_2,\theta] = \sum_{x_1} \mathbb{P}[y,x_1|x_2,\theta]$$

What is inference in linear regression?

Learning

- Computing conditional probabilities θ
- Approaches:
 - 1. Maximum A Posteriori (MAP)

$$\arg\max_{\theta} \log \mathbb{P}[\theta|x] = \arg\max_{\theta} \ (\log \mathbb{P}[x|\theta] + \log \mathbb{P}[\theta])$$

Learning

- Computing conditional probabilities θ
- Approaches:
 - 1. Maximum A Posteriori (MAP)

$$\arg\max_{\theta} \log \mathbb{P}[\theta|x] = \arg\max_{\theta} \ (\log \mathbb{P}[x|\theta] + \log \mathbb{P}[\theta])$$

- 2. Inference!
 - Infer distribution of θ given x
 - Return <u>mode</u>, median, mean, or anything appropriate

Learning

- Computing conditional probabilities θ
- Approaches:
 - 1. Maximum A Posteriori (MAP)

 $\arg\max_{\theta} \log \mathbb{P}[\theta|x] = \arg\max_{\theta} \ \left(\log \mathbb{P}[x|\theta] + \log \mathbb{P}[\theta] \right)$

- 2. Inference!
 - Infer distribution of θ given x
 - Return <u>mode</u>, median, mean, or anything appropriate
- Fixed effects vs random effects (mixed effects models)

Inference in Practice

- Precise inference is often impossible
- Variational inference: approximate models
- Markov Chain Monte Carlo (MCMC):
 - Gibbs samples
 - Metropolis Hastings
 - Others

Probabilistic Modeling Languages

- Simple framework to describe a Bayesian model
- Inference with MCMC and parameter search
- Popular frameworks:
 - JAGS
 - BUGS, WinBUGS, OpenBUGS
 - Stan
- Examples:
 - Linear regression
 - Ridge regression
 - Lasso