Online Recommender Systems

CS 780/880

Outline

Content-based offer recommendations

Collaborative filtering

- Recommender systems
- Online travel recommendations
- Collaborative filtering
- Matrix factorization and completion

Outline

Content-based offer recommendations

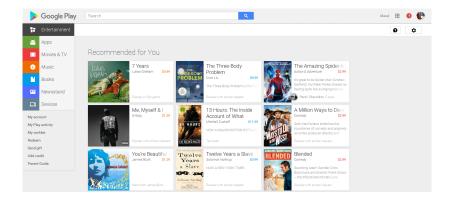
Collaborative filtering

- Recommender systems
- Online travel recommendations
- Collaborative filtering
- Matrix factorization and completion

Example recommender systems

- Movie recommendations (Netflix)
- Personalized music (Pandora)
- Relevant product recommendations (Amazon)
- Online advertising (Facebook)
- Online dating (OK Cupid)
- Special offers, coupons, and discounts (Stores)

Google Play recommendations



Amazon recommendations

۰.

You Save: \$7.39 (71%)

In Stock

Want it tomorrow, April 19? Add it to a qualifying order within 22 hrs 46 mins and oboose Same-Day Delivery at obcoloat, Details Ships from and sold by Amazon.com. Giftwrap available.

Size: @-Inches

- Great for photos, papers, crafts - Comes in 6", 7", 8" sizes

- High quality, durable stainless steel blades - Soft grip handles
- 10 Year Limited Wananty

Add-on item (

This item is available because of the Addion program.

The Add-on program allows Amagen to offer thousands of low priced items that would be cost prohibitive to ship on their own. These items ship with qualifying orders over\$25. Details

53 new from \$2.00 1 used from \$1.99

Roll over image to zoom in

Simple Sewing Machine +Learn more

Customers Who Bought This Item Also Bought

Dispenses, 1in. Core, Black

\$3.97

Scotch Desktop Tape Saingline Stagler 2-In-1 Dispenser Silvertech, Set, Includes Stapler,

Count Staples....

\$5.99 Prime

Two-Tone (C00-ST)

\$3.09

Swingline Light Duty Standard Staples 20 Stapler Remover and 5000 Sheets, Black (\$7040501) ******** 107 \$3.89

-Soutch Maple Tape 2105. Sharple Accent Tark-Style Soutch Classic Desidop 3/4 x 300 Inches, Pack of 3 Highlighters, 6 Colored Highlighters (26076)

\$3.99

+++++++ 985

\$3,78

Sparco 85000 Staple

Page 1 of 12

BIC Round Stip Xtu Life Ball Pen, Medium Point (1.0 mm) Black 60-Count ****** 2.593 \$4.79

Tape Dispenses Pink, for ****

\$2.59

Removet, Color May Vary #1 Best Seller (in Staple

IBM travel recommendations

Recommend relevant products on website of a tour operator

Unknown customer

Unknown customer

Browsing history (trips)

Unknown customer

Browsing history (trips)

Unknown customer

Browsing history (trips)

Recommended trips

Benefits of online recommendations

What are the benefits?

For users/customer:

- 1. Find the right product or information
- 2. See only relevant advertising
- 3. Discover diverse products or information sources

For businesses/websites:

- 1. Increase user satisfaction
- 2. Sell more products and right products
- 3. Discriminate between customers
- 4. Predict and understand customer preferences

Benefits of online recommendations

- What are the benefits?
- For users/customer:
 - 1. Find the right product or information
 - 2. See only relevant advertising
 - 3. Discover diverse products or information sources
- For businesses/websites:
 - 1. Increase user satisfaction
 - 2. Sell more products and right products
 - 3. Discriminate between customers
 - 4. Predict and understand customer preferences

Benefits of online recommendations

- What are the benefits?
- For users/customer:
 - 1. Find the right product or information
 - 2. See only relevant advertising
 - 3. Discover diverse products or information sources
- For businesses/websites:
 - 1. Increase user satisfaction
 - 2. Sell more products and right products
 - 3. Discriminate between customers
 - 4. Predict and understand customer preferences

By delivery:

- **Item-to-item** recommendations: e.g. Amazon products
- ► User-to-item recommendations: e.g. Netflix, Google Play

By information used:

- Content-based: Use item description and user profile
 - Use when rich user profile and content information is available
- Collaborative filtering: Use preferences of other users
 - When rich interaction history is available
- ▶ Hybrid: Combination

By delivery:

- Item-to-item recommendations: e.g. Amazon products
- ► User-to-item recommendations: e.g. Netflix, Google Play

By information used:

- Content-based: Use item description and user profile
 - Use when rich user profile and content information is available
- Collaborative filtering: Use preferences of other users
 - When rich interaction history is available
- Hybrid: Combination

- By delivery:
 - Item-to-item recommendations: e.g. Amazon products
 - ► User-to-item recommendations: e.g. Netflix, Google Play

- By information used:
 - Content-based: Use item description and user profile
 - Use when rich user profile and content information is available
 - Collaborative filtering: Use preferences of other users
 - When rich interaction history is available
 - ► Hybrid: Combination

- By delivery:
 - Item-to-item recommendations: e.g. Amazon products
 - ► User-to-item recommendations: e.g. Netflix, Google Play

- By information used:
 - Content-based: Use item description and user profile
 - Use when rich user profile and content information is available
 - Collaborative filtering: Use preferences of other users
 - When rich interaction history is available
 - **Hybrid**: Combination

- By delivery:
 - Item-to-item recommendations: e.g. Amazon products
 - ► User-to-item recommendations: e.g. Netflix, Google Play

- By information used:
 - Content-based: Use item description and user profile
 - Use when rich user profile and content information is available
 - Collaborative filtering: Use preferences of other users
 - When rich interaction history is available
 - Hybrid: Combination

Content-based or collaborative filtering?

Unknown customer

Browsing history (trips)

Recommended trips

Content-based recommender systems

- Learn user preference model based on attributes
- Use historical user preference data

User		Movie		
Gender	Age	Genre	Year	Rating
Male	16	Comedy	1998	1
Male	98	Horror	1912	5
Female	43	Action	2016	3

Use supervised learning methods

Collaborative-filtering recommender systems

- Very flexible: no need to know content or user profiles
- Simple and powerful methods
- Training data: Partial user-item preferences

• Making recommendations: Fill in the blanks (?)

- Infer preferences from similar users
- Other users:

Basic algorithm:

- 1. Find similar user (e.g. 2 ratings same)
- 2. Infer unknown preferences

- Infer preferences from similar users
- Other users:

 $\begin{array}{c}
\text{item} \\
3 ? ? 1 3 1 1 5 ? 5 \\
4 3 ? 3 ? ? ? ? 5 ?
\end{array}
\right)$

- Current user: $\frac{1}{29}\left(\begin{array}{ccccccccc} & 3 & 3 & 3 & 7 & 7 & 1 & 5 & 7 & 7 \\ \end{array}\right)$
- Basic algorithm:
 - 1. Find similar user (e.g. 2 ratings same)
 - 2. Infer unknown preferences

- Infer preferences from similar users
- Other users:

 $\begin{array}{c}
\text{item} \\
3 ? ? 1 3 1 1 5 ? 5 \\
4 3 ? 3 ? ? ? ? 5 ?
\end{array}$

► Current user:

 bg
 ?
 3
 3
 ?
 ?
 1
 5
 ?
 ?

- Basic algorithm:
 - 1. Find similar user (e.g. 2 ratings same)
 - 2. Infer unknown preferences

- Infer preferences from similar users
- Other users:

 $\begin{array}{c}
\text{item} \\
3 ? ? 1 3 1 1 5 ? 5 \\
4 3 ? 3 ? ? ? ? 5 ?
\end{array}$

- Current user: $\frac{1}{29} \left(\begin{array}{cccc} 4 & 3 & 3 & 3 & ? & ? & 1 & 5 & 5 \\ \end{array} \right)$
- Basic algorithm:
 - 1. Find similar user (e.g. 2 ratings same)
 - 2. Infer unknown preferences

- Infer preferences from similar users
- Other users:

 $\begin{array}{c}
\text{item} \\
3 ? ? 1 3 1 1 5 ? 5 \\
4 3 ? 3 ? ? ? ? 5 ?
\end{array}$

► Basic algorithm:

- 1. Find similar user (e.g. 2 ratings same)
- 2. Infer unknown preferences

- Infer preferences from similar users
- Other users:

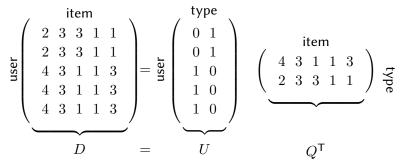
 $\begin{array}{c}
\text{item} \\
3 & ? & ? & 1 & 3 & 1 & 1 & 5 & ? & 5 \\
4 & 3 & ? & 3 & ? & ? & ? & ? & 5 & ?
\end{array}$

► Basic algorithm:

- 1. Find similar user (e.g. 2 ratings same)
- 2. Infer unknown preferences
- Why does this fail? Conflicting preferences!

Matrix factorization

- Better model for addressing incompatible preferences
- Assumption: Latent (unobserved) customer type, e.g.
 - 1. Adventure seeking
 - 2. Luxury oriented
- Low-rank matrix decomposition:

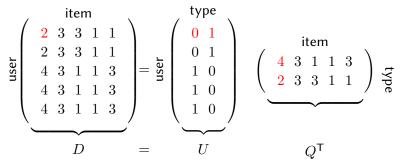


$$\blacktriangleright D_{11} = U_1 Q_1^\mathsf{T}$$

Not integral in general!

Matrix factorization

- Better model for addressing incompatible preferences
- Assumption: Latent (unobserved) customer type, e.g.
 - 1. Adventure seeking
 - 2. Luxury oriented
- Low-rank matrix decomposition:



$$\blacktriangleright D_{11} = U_1 Q_1^\mathsf{T}$$

Not integral in general!

Computing matrix factorization

- Given a **small** constant k
- ▶ How to compute the best factorization U, Q?

$$D \stackrel{?}{=} UQ^{\mathsf{T}}$$
 s.t. $\operatorname{rank}(U) = \operatorname{rank}(Q) = k$

Solve optimization problem:

$$\min_{U,Q} \|D - UQ^{\mathsf{T}}\|_F^2 \text{ s.t. } \operatorname{rank}(U) = \operatorname{rank}(Q) = k$$

► Frobenius norm: $||A||_F^2 = \sum_{i,j} A_{ij}^2 = \sum_i \sigma_i^2$

Solve optimally by SVD when D is complete

- ▶ NP-hard when *D* is incomplete
- Simple, practical, and effective method
 - 1. Fix U and solve: $\min_Q \|D UQ_{\perp}^{\mathsf{T}}\|_F^2$ s.t. $\operatorname{rank}(Q) = k$
 - 2. Fix Q and solve: $\min_U ||D UQ^{\mathsf{T}}||_F^2$ s.t. $\operatorname{rank}(U) = k$

Computing matrix factorization

- Given a small constant k
- ▶ How to compute the best factorization *U*, *Q*?

$$D \stackrel{?}{=} UQ^{\mathsf{T}}$$
 s.t. $\operatorname{rank}(U) = \operatorname{rank}(Q) = k$

Solve optimization problem:

 $\min_{U,Q} \|D - UQ^{\mathsf{T}}\|_F^2 \text{ s.t. } \operatorname{rank}(U) = \operatorname{rank}(Q) = k$

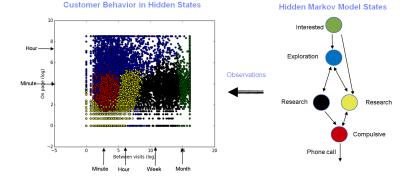
- Frobenius norm: $||A||_F^2 = \sum_{i,j} A_{ij}^2 = \sum_i \sigma_i^2$
- Solve optimally by SVD when D is complete
- ▶ NP-hard when *D* is incomplete
- Simple, practical, and effective method
 - 1. Fix U and solve: $\min_{Q} \|D UQ_{-}^{\mathsf{T}}\|_{F}^{2}$ s.t. $\operatorname{rank}(Q) = k$
 - 2. Fix Q and solve: $\min_U \|D UQ^{\mathsf{T}}\|_F^2$ s.t. $\operatorname{rank}(U) = k$

Matrix factorization: Results

- One year worth of website click-stream data
- Dependence on number of previously visited sites
- Matrix factorization (green) vs baseline (blue)

Beyond simple models: Dynamic user behavior

Hidden Markov Model



 Strategic recommendations: optimal in long run (conversion/satisfaction)

Recommendations on social media (Twitter)

Challenges

- 1. Large volume: (6000 t/s)
- 2. Short (cryptic) text: "Cruise with me on this wild ride"

Approach:

- 1. Use language models to identify travel intent
- Matrix factorization to match catalog descriptions with tweets
- Positive engagement: 15%