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Midterm Results

» Highest score on the non-R part: 67/ 77

> Score scaling: Additive in order for at least of 20% class gets
over 95%

» Independent scaling for graduate and undergraduate students
> Not like grading on a curve5
» Questions that were most often wrong

» Some of the same questions will be on the final (practice tests)



Methods Covered Until Now

> Supervised learning

7.

AN ANE I

Linear regression
Logistic regression
LDA, QDA

Naive Bayes
Lasso

Ridge regression
Subset selection

» Unsupervised learning

1.

PCA

2. K-means clustering
3.
4. Expectation maximization

Hierarchical clustering



Important Concepts We Have Covered

v

Training and test sets

v

Cross-validation and leave-one-out

v

Maximum likelihood

» Maximum a posteriori



Remainder of the Course

> In ISL:

1. Support vector machines

2. Boosting and bagging

3. Advanced nonlinear features
» Not in ISL:

1. Recommender systems
Methods for time series analysis
Reinforcement learning

Deep learning

Graphical models

oW



Today: Linear Algebra

» Crucial in many machine learning algorithms
» Which ones?

Linear regression
Logistic regression
LDA, QDA

Naive Bayes

Lasso

Ridge regression
Subset selection

PCA

K-means clustering
Hierarchical clustering

- o
SV NIN AW~

Expectation maximization



Suggested Linear Algebra Books

» Strang, G. (2016). Introduction to linear algebra (5th ed.)
http://math.mit.edu/~gs/linearalgebra/
Watch online lectures:
https://ocw.mit.edu/courses/mathematics/
18-06-1linear-algebra-spring-2010/
video-lectures/

» Hefferon, J. (2017). Linear algebra (3rd ed.).
Free PDF:
http://joshua.smcvt.edu/linearalgebra/


http://math.mit.edu/~gs/linearalgebra/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
https://ocw.mit.edu/courses/mathematics/18-06-linear-algebra-spring-2010/video-lectures/
http://joshua.smcvt.edu/linearalgebra/
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Linear Equation

Equation
X

2

of a line:
A

y=mx+Db
)

y—mzr=>
)

To —mxr, =0b
)
—mx;+ax2=">
4 (fhaz #0)

a1T] + asze = b
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Linear Equation

Linear equation in variables x1, ..., xy:

a1x1 +asxro+ ... +apx, =0
where aq, ..., a, and maybe b are all known in advance.
Solution is a list s1, ..., s, of numbers so

a181 +asss +...+aps, = b

Example 1: For the equation a1x1 4 asx2 = b of a line, given above:

The pair sy, s2 is a solution <= the point (s1, s2) is on the line.



Example 2
Converting grades to the standard scale: F' =0 < grade < 4 = A,
let

x1 be your first midterm grade

22 be your second midterm grade

x3 be your grade on the final

x4 be your homework & quiz grade

vV v vV VvVY

x5 be your i-clicker grade



Example 2
Converting grades to the standard scale: F' =0 < grade < 4 = A,
let

x1 be your first midterm grade

22 be your second midterm grade

x3 be your grade on the final

x4 be your homework & quiz grade

vV v vV VvVY

x5 be your i-clicker grade
Then

before then.

Grades: Midterms @ 20% 40%
Final 40%
Homework and Quizzes 15%
Class participation (via iClicker use) 5%

See "Discussion Sections" above for major penalty clause.
If this sounds too straightforward, consult the course Randomly Asked Questions page.

translates to

0.2x1 4+ 0.2x9 4+ 0.4x3 4+ 0.15x4 + 0.05z5 = your course grade
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A system of linear equations is a bunch of linear equations:
aj1r1 + ajprs + ... + apTy, = by

ao121 + a2 + ... + aopxy = by

Am1T1 + AmaZo + ... + GmnTn = bm



System of Linear Equations

A system of linear equations is a bunch of linear equations:

1171 + a12%2 + ... + G1pTn = b1

ao121 + a2 + ... + aopxy = by

Am121 + @22 + ... + GpnTn = by
A solution to the system is a list
81y ..y 8p € R

that is simultaneously a solution to all m equations.



System of Linear Equations

A system of linear equations is a bunch of linear equations:

1171 + a12%2 + ... + G1pTn = b1

ao121 + a2 + ... + aopxy = by

Am121 + @22 + ... + GpnTn = by
A solution to the system is a list
81y ..y 8p € R

that is simultaneously a solution to all m equations.
That is, all m equations are true when 1 = s1, 29 = So, ..., Tp = Sp.



Example

Conceptual example:

a1171 + a1ax2 = by

a2171 + ag2x2 = by
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Example

Conceptual example:

a1171 + a1ax2 = by

a2171 + ag2x2 = by

Solution < two lines intersect:
X

2 Example:
11 + 229 =3
201 + 1z =3

= ($1,$2) = (1, 1)




Line Configurations

Other possibilities:

X5

k\

Xy
\
\

X1




Line Configurations

Other possibilities:

X5

k\

Xy
\
\

X1

lzy + 229 =3
1I1 +2$2 =4

inconsistent



Line Configurations

Other possibilities:

X5

%

/

X
)/

lzy + 229 =3
11‘1 +21‘2 =4

inconsistent

lz1 + 229 =3
21 + 410 =6
redundant
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3 Possible Line Configurations

Upshot: There are exactly three possibilities
1. There could be no solution
2. There could be exactly one solution

3. There could be infinitely many solutions

Some goals:
> Figure out which possibility applies.
> Write down the solution if it’s unique.

> if there are infinitely many solutions, figure out a way to
describe them all.
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The critical information is in the a;;, b;.



Matrix

The critical information is in the a;;, b;.
So extract just those numbers into a matrix

a1z + ...+ a1y, = by

2121 + ... + aonx, = bo

am1T1 + ... + GmnZn = b,



Matrix

The critical information is in the a;;, b;.
So extract just those numbers into a matrix

ail aia ... Qin
a1 azg ... a2
aml Am2 ... Gmn
a1z + ...+ a1y, = by
2121 + ... + aony = bo m X n coefficient matrix

am1T1 + ... + GmnZn = b,



Matrix

The critical information is in the a;;, b;.
So extract just those numbers into a matrix

a1’y + ...

as1r1 + ...

Am1T1 + ...

ail
a1

am1

+ a1p®y = by

+ a2pTy = by

ai2 Aln
a2 a2n
am?2 Gmn

m X n coefficient matrix

ail
+ ATy = by

am1

a2 ... Qinp | bl
|

a2 ... Q2 by
|
;o

am2 Gmn 1 bm

m % (n+ 1) augmented matrix
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> Multiply an equation by (interchange)

c#0 > Multiply a row by ¢ # 0
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> Replace one equation by
itself plus a multiple of
another equation



Operations Allowed

These don’t change the set of solutions for a system of linear

equations:

> Reorder the equations Matrix operations:

» Reorder the rows

> Multiply an equation by (interchange)

c#0 > Multiply a row by ¢ # 0
(scaling)
> Replace one equation by » Replace one row by itself
itself plus a multiple of plus a multiple of another
another equation row (replacement)

Grand strategy: Do this until the equations are easy to solve.
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21+ 1z = 3
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—3z0 = -3
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Subtract twice 15¢ from 274:

1y + 229 =3
—31‘2 =-3
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Example

lzy + 225 =3
21+ 1z = 3

Subtract twice 15¢ from 274:

1y + 229 =3
—31‘2 =-3

Add % second to first:
1.112'1 =1

—3x9 = —3

Multiply second by —%

xlzl
$2:1

1 2,3
2 1'3
1 2,3
0 -3'-3
1 0,1
0 -3'-3
1 0,1
0 1'1




Step one:

Use first 21 term [upper left matrix entry] to eliminate all other x;
terms [change rest of first column to 0]:

L1: 1‘1—31‘2—21‘3:
L2: 2:(}1 — 4.%'2 — 3.%'3 =
L3: —3x1+6x9+8r3= -5



Step one:

Use first 1 term [upper left matrix entry] to eliminate all other x;
terms [change rest of first column to 0]:

L1: 1‘1—31‘2—21‘3: 6
L2: 2:(}1 — 4.%'2 — 3.%'3 = 8
L3: —3x1+6x0+8x3= -5

Subtract 2x first from second
Add 3 x first to third:

Ll: 1’1—31’2—21’3: 6
L2 —-2L1: 209 +x3 = —4
3L1+ L3: —3x9 4+ 223 = 13



Step one:

Use first 1 term [upper left matrix entry] to eliminate all other x;
terms [change rest of first column to 0]:

L1: — 3x9 — 203 = 6 ‘

L2 le 43:2 3963 8 b 2l
b 2wy —dwy — 3wz = 29 -4 -3'8

L3: —3x1+6x9+8r3= -5 -3 6 8 1 =5

Subtract 2x first from second
Add 3 x first to third:

Ll: 1’1—31’2—21’3: 6
L2 —-2L1: 209 +x3 = —4
3L1+ L3: —3x9 4+ 223 = 13



Step one:

Use first 1 term [upper left matrix entry] to eliminate all other x;
terms [change rest of first column to 0]:

L1: — 329 — 223 = 6 ‘
L2 le 43:2 3963 8 b 2d
: Tl — &2 — 93 = 2 -4 —3:8
L3: —3x1+6x9+8r3= -5 -3 6 8 1 =5
Subtract 2x first from second
Add 3 x first to third:
L1: 2 —3x9—223= 6 1'=3 -2.6
L2 —2L1: 2 = —4 0 2 1,4
—abl: T2 3= — 0 -3 2 113
3L1+ L3 : —3x9 + 223 = 13 ‘

Move on to Step two! - the second column



Step two:

Ll: x1—3x9— 223 = 6
L2: 200 +x3 = —4
L3: —3x9 4+ 23 = 13



Step two:

Ll: z;—3x9 — 23 = 6
L2: 200 +x3 = —4
L3: —3x9 4+ 23 = 13

Add %X L2 to L1 and L3:

3 1
L1+ §L2 Tox — 5%3 =
L2: 2x0 + x3 =
3 7
L —L2: - =
3+ 5 21’3



Step two:

Ll: x1—3x9— 223 = 6
L2: 209 +x3 = —4
L3: —3x9 4+ 23 = 13

Add %X L2 to L1 and L3:

3 1
L1+3L2: a1 —sa= 0
L2: 209 + 13 = —4
3 7
L —L2: —r3 =
3+2 21’3 7

Move on to Step three! - the third column

1 -3
0 2
0 -3
10
0 2
00

-2 6
1! —4
2 113
510
1! -4
;T



Step three:

1
L1 1 — 5.7}3
L2 220 + x3
L3: I3

Subtract L3 from L2;
add % L3 to L1:

1

L1+ §L3 ox
L2 — %LS i 219

L3: I3



Step three:

1 |
L1 €1 — —x3 = 0 L0 _%‘ 0
2 02 1 -4
L2 219 + 23 —4 00 112
L3: xr3 = 2
1 00,1
Subtract L3 from L2; 0 2 01—6
add § L3to L1: 00 112
1 Multiply L2 by 4
L1+§L3: T = 1 uHpPlY Y3
. B 1 00,1
L3: r3= 2 0012

We're done: (x1, z2,23) = (1,-3,2)
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1+ 219 =3
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What can go wrong?

1+ 219 =3
T, + 229 =4

Subtract L1 from L2:

1+ 229 =3
0=1

inconsistent
NO SOLUTION



What can go wrong?

1+ 219 =3 1+ 229 =3
T+ 2x9 =4 201 +4x90 =6

Subtract L1 from L2:

1+ 229 =3
0=1

inconsistent
NO SOLUTION



What can go wrong?

1+ 219 =3
T+ 2x9 =4

Subtract L1 from L2:

1+ 229 =3
0=1

inconsistent
NO SOLUTION

1+ 229 =3
201 + 419 =6

Subtract 2L1 from L2:

1+ 219 =3
0=0

redundant
SOLUTIONS INFINITE
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If the system has 3 variables, an equation determines a plane in R?.
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Configurations

If the system has 3 variables, an equation determines a plane in R?.
So a solution will be the intersection of 3 planes: Py, P, Ps:

inconsistent equations (no solution)



Configurations

If the system has 3 variables, an equation determines a plane in R?.
So a solution will be the intersection of 3 planes: Py, P, Ps:

single solution redundant



Question?

George tells you the system of equations

5551 + 2.172 — 3333 =4
12%1 - 71‘2 + 21‘3 =8
—3x1 4+ 4z + 53 = 10

has exactly three solutions.
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5.CE1 + 2.172 — 3333 =4
12%1 — 71‘2 + 21‘3 =38
—3x1 4+ 4z + 53 = 10

has exactly three solutions.

A) George is probably right, since he’s Honest George.
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Question?

George tells you the system of equations

5.2131 + 2.172 — 3273 =4
12%1 — 71‘2 + 21’3 =38
—3x1 4+ 4z + 53 = 10

has exactly three solutions.

A) George is probably right, since he’s Honest George.
B) George is probably wrong.

C) George is definitely right.

D) George is definitely wrong.

E) My brain is full.
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An m-vector [column vector, vector in R™] is an m x 1 matrix:

ai
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Vector

An m-vector [column vector, vector in R™] is an m x 1 matrix:

ai
az
as

1]
I

am

Can add two m-vectors in the obvious way, or multiply a vector by a
real number:

ay b1 (a1 + 1]
as ba a1 + bo
ag | 4 | b3 | = |a1+0b3],

am bm | a1 + bm_



Vector

An m-vector [column vector, vector in R™] is an m x 1 matrix:

al
az
as

1]
I

am

Can add two m-vectors in the obvious way, or multiply a vector by a
real number:

_al_ _bl_ _a1+bl_ _al_ _cal_
as by a1 + by ao cao
as | 4+ b3 | — | a1 + b3 : clas| = | cas

| | | b | [a1 + by, | | A | | cam |

Do not multiply two vectors together like this.
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Vector Operations

Examples:

2
4

1
3- (21— 7- +
3

{ 3-1-7-0+2-1

3-2-7-242-(-1)
3-3-7-4+2-0

2.

|




Vector Operations

Examples:

2
4

+ 2.

-

3-1-7-042-1 5
3:2—-7-24+2-(-1)| = [-10
3:3-7-442-0 —-19




Question:



Question:




Picturing Vectors

2- and 3-vectors:
» think of vector as arrow from 0

» multiply number with vector via scaling.

» add vectors head-to-tail;

X

o U
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Picturing Vectors

2- and 3-vectors:
» think of vector as arrow from 0

» multiply number with vector via scaling.

» add vectors head-to-tail;

X

2
u+yv




Picturing Vectors

2- and 3-vectors:
» think of vector as arrow from 0
» multiply number with vector via scaling.

> add vectors head-to-tail; parallelogram rule;
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Application

Gives more flexible way to describe a line.
For a line through a point p, in direction d, use

-

F=p+-1-d t=-1

Argument:




Application

Gives more flexible way to describe a line.
For a line through a point p, in direction d, use

F=p+t-d, LER

Argument:
x2
P+t
d
X1
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Pictured are points u, v € R2,
Which point represents 4 — 307

X, D
e C
.E
B
A °U
X
eV
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X
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Question:

Pictured are points u, v € R2,
Which point represents 4 — 307

X

2
'
»
-3v
»
¥ ]
\ X,
2
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For all W, #, 7 € R™ and s,t € R, we have the following.
_l’_

—

> I+y=9 (commutative)
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Properties of Vectors

For all w
> T+ Y=y+7
> (T+y)+u =2
» Z4+0=0+7=
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> (s+t)d=s¥+ 1T (distributive law)
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> T+ Y=y+7 (commutative)
> (Z+79) + 0 =2+ (§+ W) (associative)
» Z4+0=0+7=7
» T+ (—F)=—-F+F=0
> LT+ ) =tZ+ty (distributive law)
> (s+t)d=s¥+ 1T (distributive law)
> s(tZ%) = (st)T (associative)
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Definition
Suppose {t1,ty ...t} are all real numbers.
The vector

T=t01 + -+ tglk

is called a linear combination of the vectors {71, Uy . .. U }.

Sample problem:
Given vectors {d1,ds . . . @y, b} in R™, find real numbers
{t1,ta2...t,} so that

t1&’1+---+tnﬁn:5.



Linear Combination

Definition
Suppose {t1,ty ...t} are all real numbers.
The vector

T=t01 + -+ tglk

is called a linear combination of the vectors {71, Uy . .. U }.

Sample problem:
Given vectors {d1,ds . . . @y, b} in R™, find real numbers
{t1,ta2...t,} so that

t1&’1+---+tnc‘in:5.

Off hand, could have any number of {t1,t5...t,} solutions.
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Linear Combination

How to think about solving for {¢1,ts...%,} in the equation

8@+ -+ tpdn = b :

Let - -~ _
bl aij
by az;
b= |b3]; aj= || forl1<j<n
[bm | [@mj |

Then for any 1 < i < m, the it" row of the equation becomes:
tia;1 + toasn + - - - + thaiy = b; or

airty + appte + - -+ aippty, = b;



Linear Combination

In other words, solving
t1@ + -+ tpln = b
is the same as solving this system of m linear equations:

airty + ... + apptn = by
asity + ... + agpty, = bo

amiti + ... + amntn = bm

We just learned how to do this!
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Linear Combination

Solving
thay+ -+ thay, =b:

is the same as solving a system of m linear equations.
The system has augmented matrix

a1 a2 ... aip 1 by
|

asy a9 a9, | bg
|

|
am1 Am2 - .- amnlbm



Linear Combination

Solving
thay+ -+ thay, =b:

is the same as solving a system of m linear equations.
The system has augmented matrix

a1 a2 ... aip 1 by
|
azg a2 ... agp | by
|
|
aml Gm2 -+ QGmn ' bm

Since each d; is a column of ¢ numbers, can just write

g @ ... @, b}



Example

Suppose

oy
S
I
o B~ N O

and want to find c1, g, c3, ¢4 so that

11 + cods + 303 + cady =

0 6 0
. 2 1| . 6
@4 BT M7 0
8 1 2

12

4

23



Example

This translates to the system of linear equations whose augmented

matrix is ‘
00 6 0,12
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4 4 1 10,13
8 8 —1 26'23



Example

This translates to the system of linear equations whose augmented

matrix is ‘
00 6 0,12
2 2 -1 6'4
4 4 1 10,13
8 8 —1 26'23

which reduces to:

o O O
o O = O
O NI= DN W



Example

This translates to the system of linear equations whose augmented

matrix is ‘
0 0 6 0,12
2 2 -1 6 : 4
4 4 1 10,13
8 8 —1 26'23
which reduces to:
110 0,3
0 01 0'2
000 1,1
00 00'0

and so has general solution

3 1
co = anything, c1 = 3~ Co,C3 =2,c4 = 3



Span

Definition
Given a collection {#}, ¥a, . .., U } of vectors in R™, the set of all
linear combinations of these vectors, that is all vectors that can be
written as

c101 + -+ + Uy
for some cy, ..., ci € Ris denoted

Span {71, ..., Uk}

and is called the span of {7, ..., v}



Span

Definition

Given a collection {#}, ¥a, . .., U } of vectors in R™, the set of all
linear combinations of these vectors, that is all vectors that can be
written as

c101 + -+ + Uy

for some cy, ..., ci € Ris denoted

Span {71, ..., Uk}

and is called the span of {7, ..., v}

Easy example: If k = 1 so there is only one vector ¥, then Span{’}
is just all vectors that are multiples of ¢. That is,
Span{v} = {cv' | c € R}
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Picturing the span when m = 2, 3:
When there is only one vector ¢ then Span{v} = {ct' | ¢ € R} is
just the line that contains both 0 (take ¢ = 0) and ¥ (take ¢ = 1).



Span

Picturing the span when m = 2, 3:
When there is only one vector ¥ then Span{7} = {c0' | c € R} is
just the line that contains both 0 (take ¢ = 0) and ¥ (take ¢ = 1).

With two vectors @ and ¥, Span{u, U} = {c14 + c2¥} pictured via
the parallelogram rule (Span = entire plane; ¢; > 0 highlighted):

-
-

(3u+Bv)/2

%
\\ - -

w\

/ \\

—




Span
So we can think of the set of all solutions as

-1
+ Span

D= N O Nlw
o O =



Span
So we can think of the set of all solutions as
-1

+ Span

D= N O Nlw
o O =

So we can picture the solution as a line in the direction of the second
vector, going through the point given by the first vector (but in R*!)
X2
Prtd

—




Matrix Multiplication

Definition
The linear combination

x1d + - - - + xpdy

is abbreviated

I
T2

[(_il o dz ... Jk] T3

[Tk

Here [61 o dz ... Eik] is the matrix A with " column ;.



Matrix Multiplication

Simplest example: each d; € R, i. e. each column in the matrix is
just a number:

b1
bo

[al az as ... ak} bs = a1by + asbs + ... apby.
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Simplest example: each d; € R, i. e. each column in the matrix is
just a number:

b1
bo
[al az as ... ak} bs = a1by + asbs + ... apby.
A
SO
7
3
1 -2 3 4] ||| =

2



Matrix Multiplication

Simplest example: each d; € R, i. e. each column in the matrix is
just a number:

b1
bo
[al az as ... ak} bs = a1by + asbs + ... apby.
A
SO
7
3
1 -2 3 4] ||| =

2

1:74(-2)-3+3-1+(-4)-2=7-6+3—-8=—4



Matrix Multiplication

Simplest example: each d; € R, i. e. each column in the matrix is

just a number:

b1
bo
[al az as ... ak} bs = a1by + asbs + ... apby.
A
SO
7
3
1 -2 3 4] ||| =

2

1-74+(-2)-3+3-14+(-4)-2=7-6+3—-8=—-4€cR".



Question

™ D~ AN

1 -2 3 4]{

A~ A~ A~ o~
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More complicated example: For a; € R?,i = 1,2, 3:
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Matrix-vector Multiplication

More complicated example: For a; € R?,i = 1,2, 3:

2

N I R K B

SO

2 3 -1 f [2-243-1-1-4] _[3
4 =2 5] || 42-2-145-4] " [26



Matrix-vector Multiplication

More complicated example: For a; € R?,i = 1,2, 3:
2 3 -1 2 2 3 -1
5 ST el [

so
2 3 -1
4 -2 5

Think of doing the simple case on each row of the matrix A:

2
S f2e243-1-1-4] [3] __,
i _[4-2—2-1+5-4]_[26] € R



Matrix-vector Multiplication

Apply simple case to first row:

2

Il S e R
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Apply simple case to first row:

2

||l bt B

Apply simple case to second row:

o2 ) lanand -l



Matrix-vector Multiplication

Apply simple case to first row:

2

||l bt B

Apply simple case to second row:

2
_ _ 2
[4 =) 5] i _[4-2—2.1+5-4]_[26] € R
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Tk

then
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Matrix-vector Multiplication

Further abbreviation:

Use vector notation:
X1

Z2
x3

Tk

then

8

T
T2
T3

Lk

511



Matrix-vector Multiplication

Summary: For A an m x n matrix, and a vector ¥ € R",
multiplication AZ is defined and gives a vector in R™.

Multiplication has two important properties:

» For any vectors @, v € R", A(d + ¥) = Aud + AT
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Matrix-vector Multiplication

Summary: For A an m x n matrix, and a vector ¥ € R",
multiplication AZ is defined and gives a vector in R™.

Multiplication has two important properties:
» For any vectors @, v € R", A(d + ¥) = Aud + AT
» For any vector @ € R™ and any ¢ € R, A(ct) = ¢(Ax).

For example:

_Ul_ _”Ul_

(5 V2
A(ﬁ—f—f‘) = [61 ay dz ... (_in] ( uz || 4 |3 ) =

| Un_| | Un |

(wrtvi)ai+- -+ (up+vn) @y = (w114 - Funly)+(Vidi+- - Fopdy) =
Au+ Av



Question



Matrix Equation

Sample problem from before:
Given vectors {@1,ds ... dy} and b in R™, find real numbers
{z1,x2... 2} so that

101 + -+ Tpd, = b.
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Sample problem from before:
Given vectors {@1,ds ... dy} and b in R™, find real numbers
{z1,x2... 2} so that

101 + -+ Tpd, = b.

Might arise from the question: Is b in Span{ay, @ . . . dn }?

New: translation to matrix equation:
Given m X n matrix A and b € R™ find a vector & € R" so that

AZ=1b

whereA:[c_il as, dz ... c_in}.



Matrix Equation

Sample problem from before:
Given vectors {@1,ds ... dy} and b in R™, find real numbers
{z1,x2... 2} so that

101 + -+ Tpd, = b.

Might arise from the question: Is b in Span{ay, @ . . . dn }?

New: translation to matrix equation:
Given m X n matrix A and b € R™ find a vector & € R" so that

AZ=1b

where A = [c—il as, dz ... c_in} . Note: the Matrix-vector
multiplication AZ makes sense only if the number of columns in A
matches the number of entries in x.
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Span{Z1, ¥} is just that line.
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Background

Background thoughts:

If two non-trivial vectors Iy, Z5 both lie on the same line, then
Span{Z1, ¥} is just that line.

On the other hand, if they don’t lie on the same line, then
Span{¥y, T2} consists of an entire plane.
(The plane determined by the heads of the vectors and 0.)

So the span of two vectors may be a plane, or it could be somethlng
simpler: either a line, or even just 0 in the case that 7 T = 0= To.
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Similarly, if three non-trivial vectors &1, Zo, @3 all lie on the same
line, then Span{Z1, Z2, Z3} is just that line.



Background

Similarly, if three non-trivial vectors &1, Zo, @3 all lie on the same
line, then Span{Z1, Z2, Z3} is just that line.

If they don’t all lie on the same line, but lie on the same plane, then
Span{Z1, T2, T3} is just that plane.



Background

Similarly, if three non-trivial vectors &1, Zo, @3 all lie on the same
line, then Span{Z1, Z2, Z3} is just that line.

If they don’t all lie on the same line, but lie on the same plane, then
Span{Z1, T2, T3} is just that plane.

If they don’t all lie in the same plane, then Span{Z, Z2, Z3} looks
like space.



Linear Independence

How do we put these ideas into math lingo, so we can be precise?

Definition
A set of vectors {¥1, ..., Uk} in R™ is linearly independent if and
only if the only solution to the equation

TV + -+ 2Rl = 0

is the solution x; = 0 for1 <4 < k.
Conversely, the set of vectors {71, ..., U} } is linearly dependent if
there are real numbers cq, ..., cx, not all zero, such that

vl + -+ ety = 0.
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Linear Independence

How do we put these ideas into math lingo, so we can be precise?

Definition
A set of vectors {¥1, ..., Uk} in R™ is linearly independent if and
only if the only solution to the equation

TV + -+ 2Rl = 0

is the solution x; = 0 for1 <4 < k.
Conversely, the set of vectors {71, ..., U} } is linearly dependent if
there are real numbers cq, ..., cx, not all zero, such that

vl + -+ ety = 0.

Idea: if the set is linearly independent, then span is big as possible.
If the set is linearly dependent then span is “thinner” than it has to
be; you could even throw some away and not change the span.



In pictureS:

{¥1, Ua, U3} linearly dependent.




{¥, U2, U3} linearly independent.
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Linear Independence

If any subset of {71, ...,Ux} is linearly dependent, so is the whole
set.
Argument: Suppose, say, {1, U2, U3} C {¥1,..., 0} is linearly

dependent. This means that there are c;, c2, c3 not all 0 so that
1) + oty + c303 = 0
But then,
1T + cola + ¢33 + 004 + .. + 00, = 0

so the whole set is linearly dependent.

Equivalently: if {#,..., ¥} is linearly independent then so is every
subset of vectors from {¥, ..., U }.
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Determining Independence

How to check whether a set of vectors {ay, ..., dy} is linearly
dependent: It’s equivalent to saying there is non-zero solution to

x1d1 + -+ + xpdy, = 0.

But this is a homogeneous system of linear equations - we can
answer that question!

Construct associated matrix of column vectors:

aii a12 Q1n

a21 a22 a2n
A=

aml am2 ... Omn

Reduce to echelon form and see if there are any free variables.
There are no free variables if and only if linearly independent
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dependent.
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Determining Independence
Example 4: Any set of more than m vectors in R is linearly
dependent.
For if n > m then the associated matrix of column vectors

ail a1 e A1n

a1 ago . aon
A=

Aml Am2 ... Qmn

is longer than it is high.
When reduced to echelon form, there must be free variables:

$ % = x ok x%
0 $ * * x =%
000 $ % =
000 0 $ =«
000O0O0$

Here 6 > 5 and x3 is the free variable.
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Question: Is this set of vectors linearly dependent, or linearly

independent?
2 3
31, |4
4 5

A) Dependent since they are 2 vectors in R3 and 2 < 3.
B) Independent since they are 2 vectors in R® and 2 < 3.
C) Dependent because one is a multiple of the other.

D) Independent because neither is a multiple of the other.

E) Independent because one is a multiple of the other.



Question

Question: Is this set of vectors linearly dependent, or linearly

independent?
2 3
3, |4
4 5

A) Dependent since they are 2 vectors in R3 and 2 < 3.
B) Independent since they are 2 vectors in R® and 2 < 3.
C) Dependent because one is a multiple of the other.

D) Independent because neither is a multiple of the other.

E) Independent because one is a multiple of the other.

Answer: It’s a pair of vectors and neither is a multiple of the other.
Hence linearly independent.
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Question

Question: Is this set of vectors linearly dependent, or linearly

independent?
1 2 -3
21,141,]| -5
5 10 —13

A) Independent since they are 3 vectors in R3.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.

D) Independent because a subset is independent.

Answer: The second is a multiple of the first, so that pair alone is
linearly dependent. Since this subset is linearly dependent, so is the
entire set. Both B) and C) are used to show linear dependence.
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Question

Question: Is this set of vectors linearly dependent, or linearly

independent?
1 1 4
I, 13,19
2 5

A) Independent since they are 3 vectors in R3.

B) Dependent because one is a multiple of the other.

D) Independent because a subset is independent.

| can’t tell.

)
)
C) Dependent because a subset is dependent.
)
E)



Answer: For this triple of vectors

17 1] T[4
1], 13], |9
ol [2| |5

we want to determine whether the homogeneous system of linear
equations:

4 Il

9 To| = 6

)

1
1
0 I3

N W

has a non-trivial solution.
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1], 13], |9
ol [2| |5

we want to determine whether the homogeneous system of linear
equations:

1 1 4 I
1 3 9 To| = 0
0 2 5 T3

has a non-trivial solution.
Consider the associated column matrix (no need to augment):
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Answer: For this triple of vectors

17 1] T[4
1], 13], |9
ol [2| |5

we want to determine whether the homogeneous system of linear
equations:

1 1 4 I
1 3 9 To| = 0
0 2 5 T3

has a non-trivial solution.
Consider the associated column matrix (no need to augment):

11 4 11 4
1 3 9 =10 2 5
0 2 5 0 2 5



Answer: For this triple of vectors

17 1] T[4
1], 13], |9
ol [2| |5

we want to determine whether the homogeneous system of linear
equations:

4
9 i) =0
)

has a non-trivial solution.
Consider the associated column matrix (no need to augment):

11 4 11 4 11 4
1 3 9] —10 2 5] =10 2 5
0 2 5 0 2 5 0 00

Since there is a free variable (namely x3) there are non-trivial
solutions, so linearly dependent.
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Connection with Span

Theorem

A set of vectors {¥1, ..., Uy} inR™ is linearly dependent if and only if
at least one of the vectors is in the span of all the others.

For example, suppose U; € Span{ts, U3, ..., U }. That means there
are co, c3, ..., Cr so that

U1 = cols + c3U3 + ... + LU
But this vector equation can be rewritten

—101 + coUs + c3U3 + ... + U, = 0.

Since at least one of the coefficients (namely —1) is not zero, this
shows the set of vectors is linearly dependent.
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Connection with Span

Theorem

A set of vectors {U1, ..., U} in R™ is linearly dependent if and only if
at least one of the vectors is in the span of all the others.

Here’s the argument in the other direction: Suppose {#1, ..., U} } is
linearly dependent. That means there are ¢y, ca, . .., cg, not all zero,
so that

C1U1 + coUs + 303 + ... + ¢V, = 0.

For concreteness, say c¢; # 0. Divide by ¢; to get

- c2 c3 Ck =
U1+ —v2+ —v3+...+ —0r =0
C1 C1 C1
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Here’s the argument in the other direction: Suppose {#1, ..., U} } is
linearly dependent. That means there are ¢y, ca, . .., cg, not all zero,
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and this can be rewritten
- c2 c3 CL
1= ——V2 — —U3 — - —Ug
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Connection with Span

In pictures:

U1 € Span{vh, U3} and {¥, U2, U3} linearly dependent.




Connection with Span

U1 ¢ Span{vs, U3} and {¥}, U2, U3} linearly independent.
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