Linear Algebra
 Introduction

Marek Petrik

3/23/2017

Midterm Results

- Highest score on the non-R part: 67 / 77
- Score scaling: Additive in order for at least of 20% class gets over 95%
- Independent scaling for graduate and undergraduate students
- Not like grading on a curve5
- Questions that were most often wrong
- Some of the same questions will be on the final (practice tests)

Methods Covered Until Now

- Supervised learning

1. Linear regression
2. Logistic regression
3. LDA, QDA
4. Naive Bayes
5. Lasso
6. Ridge regression
7. Subset selection

- Unsupervised learning

1. PCA
2. K-means clustering
3. Hierarchical clustering
4. Expectation maximization

Important Concepts We Have Covered

- Training and test sets
- Cross-validation and leave-one-out
- Maximum likelihood
- Maximum a posteriori

Remainder of the Course

- In ISL:

1. Support vector machines
2. Boosting and bagging
3. Advanced nonlinear features

- Not in ISL:

1. Recommender systems
2. Methods for time series analysis
3. Reinforcement learning
4. Deep learning
5. Graphical models

Today: Linear Algebra

- Crucial in many machine learning algorithms
- Which ones?

1. Linear regression
2. Logistic regression
3. LDA, QDA
4. Naive Bayes
5. Lasso
6. Ridge regression
7. Subset selection
8. PCA
9. K-means clustering
10. Hierarchical clustering
11. Expectation maximization

Suggested Linear Algebra Books

- Strang, G. (2016). Introduction to linear algebra (5th ed.) http://math.mit.edu/~gs/linearalgebra/ Watch online lectures:
https://ocw.mit.edu/courses/mathematics/
18-06-linear-algebra-spring-2010/ video-lectures/
- Hefferon, J. (2017). Linear algebra (3rd ed.).

Free PDF:
http://joshua.smcvt.edu/linearalgebra/

Linear Equation

$$
\begin{gathered}
y=m x+b \\
\Uparrow \\
y-m x=b \\
\Uparrow \\
x_{2}-m x_{1}=b \\
\Downarrow \\
-m x_{1}+x_{2}=b \\
\Downarrow\left(\Uparrow a_{2} \neq 0\right) \\
a_{1} x_{1}+a_{2} x_{2}=b^{\prime}
\end{gathered}
$$

Linear Equation

Linear equation in variables x_{1}, \ldots, x_{n} :

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

where a_{1}, \ldots, a_{n} and maybe b are all known in advance.

Linear Equation

Linear equation in variables x_{1}, \ldots, x_{n} :

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

where a_{1}, \ldots, a_{n} and maybe b are all known in advance.
Solution is a list s_{1}, \ldots, s_{n} of numbers so

$$
a_{1} s_{1}+a_{2} s_{2}+\ldots+a_{n} s_{n}=b
$$

Linear Equation

Linear equation in variables x_{1}, \ldots, x_{n} :

$$
a_{1} x_{1}+a_{2} x_{2}+\ldots+a_{n} x_{n}=b
$$

where a_{1}, \ldots, a_{n} and maybe b are all known in advance.
Solution is a list s_{1}, \ldots, s_{n} of numbers so

$$
a_{1} s_{1}+a_{2} s_{2}+\ldots+a_{n} s_{n}=b
$$

Example 1: For the equation $a_{1} x_{1}+a_{2} x_{2}=b$ of a line, given above:
The pair s_{1}, s_{2} is a solution \Longleftrightarrow the point $\left(s_{1}, s_{2}\right)$ is on the line.

Example 2

Converting grades to the standard scale: $F=0 \leq$ grade $\leq 4=A$, let

- x_{1} be your first midterm grade
- x_{2} be your second midterm grade
- x_{3} be your grade on the final
- x_{4} be your homework \& quiz grade
- x_{5} be your i-clicker grade

Example 2

Converting grades to the standard scale: $F=0 \leq$ grade $\leq 4=A$, let

- x_{1} be your first midterm grade
- x_{2} be your second midterm grade
- x_{3} be your grade on the final
- x_{4} be your homework \& quiz grade
- x_{5} be your i-clicker grade

Then

> before then.

Grades: Midterms @ 20\% 40\%
Final 40\%
Homework and Quizzes 15\%
Class participation (via iClicker use) 5\%
See "Discussion Sections" above for major penalty clause.
If this sounds too straightforward, consult the course Randomly Asked Questions page.
translates to

$$
0.2 x_{1}+0.2 x_{2}+0.4 x_{3}+0.15 x_{4}+0.05 x_{5}=\text { your course grade }
$$

System of Linear Equations

A system of linear equations is a bunch of linear equations:

System of Linear Equations

A system of linear equations is a bunch of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

System of Linear Equations

A system of linear equations is a bunch of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

A solution to the system is a list

$$
s_{1}, \ldots, s_{n} \in \mathbb{R}
$$

that is simultaneously a solution to all m equations.

System of Linear Equations

A system of linear equations is a bunch of linear equations:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \vdots \\
& a_{m 1} x_{1}+a_{m 2} x_{2}+\ldots+a_{m n} x_{n}=b_{m}
\end{aligned}
$$

A solution to the system is a list

$$
s_{1}, \ldots, s_{n} \in \mathbb{R}
$$

that is simultaneously a solution to all m equations.
That is, all m equations are true when $x_{1}=s_{1}, x_{2}=s_{2}, \ldots, x_{n}=s_{n}$.

Example

Conceptual example:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

Example

Conceptual example:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

Solution \Leftrightarrow two lines intersect:

Example

Conceptual example:

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}=b_{1} \\
& a_{21} x_{1}+a_{22} x_{2}=b_{2}
\end{aligned}
$$

Solution \Leftrightarrow two lines intersect:

Example:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
2 x_{1}+1 x_{2} & =3 \\
\Leftrightarrow\left(x_{1}, x_{2}\right) & =(1,1)
\end{aligned}
$$

Line Configurations

Other possibilities:

Line Configurations

Other possibilities:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 1 x_{1}+2 x_{2}=4
\end{aligned}
$$

inconsistent

Line Configurations

Other possibilities:

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 1 x_{1}+2 x_{2}=4
\end{aligned}
$$

inconsistent

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+4 x_{2}=6
\end{aligned}
$$

redundant

3 Possible Line Configurations

Upshot: There are exactly three possibilities

3 Possible Line Configurations

Upshot: There are exactly three possibilities

1. There could be no solution

3 Possible Line Configurations

Upshot: There are exactly three possibilities

1. There could be no solution
2. There could be exactly one solution

3 Possible Line Configurations

Upshot: There are exactly three possibilities

1. There could be no solution
2. There could be exactly one solution
3. There could be infinitely many solutions

3 Possible Line Configurations

Upshot: There are exactly three possibilities

1. There could be no solution
2. There could be exactly one solution
3. There could be infinitely many solutions

Some goals:

- Figure out which possibility applies.

3 Possible Line Configurations

Upshot: There are exactly three possibilities

1. There could be no solution
2. There could be exactly one solution
3. There could be infinitely many solutions

Some goals:

- Figure out which possibility applies.
- Write down the solution if it's unique.

3 Possible Line Configurations

Upshot: There are exactly three possibilities

1. There could be no solution
2. There could be exactly one solution
3. There could be infinitely many solutions

Some goals:

- Figure out which possibility applies.
- Write down the solution if it's unique.
- if there are infinitely many solutions, figure out a way to describe them all.

Matrix

The critical information is in the $a_{i j}, b_{i}$.

Matrix

The critical information is in the $a_{i j}, b_{i}$. So extract just those numbers into a matrix

$$
\begin{gathered}
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n}=b_{2} \\
\vdots \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m}
\end{gathered}
$$

Matrix

The critical information is in the $a_{i j}, b_{i}$.
So extract just those numbers into a matrix

$$
\begin{array}{cc}
& {\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]} \\
a_{11} x_{1}+\ldots+a_{1 n} x_{n}=b_{1} \\
a_{21} x_{1}+\ldots+a_{2 n} x_{n}=b_{2} & m \times n \text { coefficient matrix } \\
\vdots & \\
a_{m 1} x_{1}+\ldots+a_{m n} x_{n}=b_{m} &
\end{array}
$$

Matrix

The critical information is in the $a_{i j}, b_{i}$.
So extract just those numbers into a matrix

$$
\begin{gathered}
{\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]} \\
m \times n \text { coefficient matrix } \\
{\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]} \\
m \times(n+1) \text { augmented matrix }
\end{gathered}
$$

Operations Allowed

These don't change the set of solutions for a system of linear equations:

- Reorder the equations

Operations Allowed

These don't change the set of solutions for a system of linear equations:

- Reorder the equations
- Multiply an equation by
$c \neq 0$

Operations Allowed

These don't change the set of solutions for a system of linear equations:

- Reorder the equations
- Multiply an equation by $c \neq 0$
- Replace one equation by itself plus a multiple of another equation

Operations Allowed

These don't change the set of solutions for a system of linear equations:

- Reorder the equations
- Multiply an equation by $c \neq 0$
- Replace one equation by itself plus a multiple of another equation

Matrix operations:

- Reorder the rows (interchange)

Operations Allowed

These don't change the set of solutions for a system of linear equations:

- Reorder the equations
- Multiply an equation by $c \neq 0$
- Replace one equation by itself plus a multiple of another equation

Matrix operations:

- Reorder the rows (interchange)
- Multiply a row by $c \neq 0$ (scaling)

Operations Allowed

These don't change the set of solutions for a system of linear equations:

- Reorder the equations
- Multiply an equation by $c \neq 0$
- Replace one equation by itself plus a multiple of another equation

Matrix operations:

- Reorder the rows (interchange)
- Multiply a row by $c \neq 0$ (scaling)
- Replace one row by itself plus a multiple of another row (replacement)

Grand strategy: Do this until the equations are easy to solve.

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

Subtract twice $1^{\text {st }}$ from $2^{n d}$:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
-3 x_{2} & =-3
\end{aligned}
$$

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

Subtract twice $1^{\text {st }}$ from $2^{n d}$:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
-3 x_{2} & =-3
\end{aligned}
$$

Add $\frac{2}{3}$ second to first:

$$
\begin{aligned}
& 1 x_{1}=1 \\
& -3 x_{2}=-3
\end{aligned}
$$

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

Subtract twice $1^{\text {st }}$ from $2^{n d}$:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
-3 x_{2} & =-3
\end{aligned}
$$

Add $\frac{2}{3}$ second to first:
$1 x_{1}=1$
$-3 x_{2}=-3$
Multiply second by $-\frac{1}{3}$
$x_{1}=1$
$x_{2}=1$

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

$$
\left[\begin{array}{ll:l}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]
$$

Subtract twice $1^{\text {st }}$ from $2^{n d}$:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
-3 x_{2} & =-3
\end{aligned}
$$

Add $\frac{2}{3}$ second to first:
$1 x_{1}=1$
$-3 x_{2}=-3$
Multiply second by $-\frac{1}{3}$

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=1
\end{aligned}
$$

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

$$
\left[\begin{array}{ll:l}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]
$$

Subtract twice $1^{\text {st }}$ from $2^{n d}$:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
-3 x_{2} & =-3
\end{aligned}
$$

$$
\left[\begin{array}{cc:c}
1 & 2 & 3 \\
0 & -3 & -3
\end{array}\right]
$$

Add $\frac{2}{3}$ second to first:
$1 x_{1}=1$
$-3 x_{2}=-3$
Multiply second by $-\frac{1}{3}$

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=1
\end{aligned}
$$

Example

$$
\begin{aligned}
& 1 x_{1}+2 x_{2}=3 \\
& 2 x_{1}+1 x_{2}=3
\end{aligned}
$$

$$
\left[\begin{array}{ll:l}
1 & 2 & 3 \\
2 & 1 & 3
\end{array}\right]
$$

Subtract twice $1^{\text {st }}$ from $2^{n d}$:

$$
\begin{aligned}
1 x_{1}+2 x_{2} & =3 \\
-3 x_{2} & =-3
\end{aligned}
$$

$$
\left[\begin{array}{cc:c}
1 & 2 & 3 \\
0 & -3 & -3
\end{array}\right]
$$

Add $\frac{2}{3}$ second to first:
$1 x_{1}=1$

$$
\left[\begin{array}{cc:c}
1 & 0 & 1 \\
0 & -3 & -3
\end{array}\right]
$$

$$
-3 x_{2}=-3
$$

Multiply second by $-\frac{1}{3}$

$$
\begin{aligned}
& x_{1}=1 \\
& x_{2}=1
\end{aligned}
$$

Step one:

Use first x_{1} term [upper left matrix entry] to eliminate all other x_{1} terms [change rest of first column to 0]:

$$
\begin{array}{rrr}
L 1: & x_{1}-3 x_{2}-2 x_{3}= & 6 \\
L 2: & 2 x_{1}-4 x_{2}-3 x_{3}= & 8 \\
L 3: & -3 x_{1}+6 x_{2}+8 x_{3}= & -5
\end{array}
$$

Step one:

Use first x_{1} term [upper left matrix entry] to eliminate all other x_{1} terms [change rest of first column to 0]:

L1: $\quad x_{1}-3 x_{2}-2 x_{3}=6$
L2: $\quad 2 x_{1}-4 x_{2}-3 x_{3}=8$
L3: $-3 x_{1}+6 x_{2}+8 x_{3}=-5$
Subtract $2 \times$ first from second
Add $3 \times$ first to third:

$$
\begin{array}{rlrl}
L 1: & x_{1}-3 x_{2}-2 x_{3} & =6 \\
L 2-2 L 1: & 2 x_{2}+x_{3} & = & -4 \\
3 L 1+L 3: & -3 x_{2}+2 x_{3} & =13
\end{array}
$$

Step one:

Use first x_{1} term [upper left matrix entry] to eliminate all other x_{1} terms [change rest of first column to 0]:

$$
\begin{array}{rrr}
L 1: & x_{1}-3 x_{2}-2 x_{3}= & 6 \\
L 2: & 2 x_{1}-4 x_{2}-3 x_{3}= & 8 \\
L 3: & -3 x_{1}+6 x_{2}+8 x_{3}= & -5
\end{array} \quad\left[\begin{array}{ccc:c}
1 & -3 & -2 & 6 \\
2 & -4 & -3 & 8 \\
-3 & 6 & 8 & -5
\end{array}\right]
$$

Subtract $2 \times$ first from second Add $3 \times$ first to third:

$$
L 1: \quad x_{1}-3 x_{2}-2 x_{3}=6
$$

$$
L 2-2 L 1: \quad 2 x_{2}+x_{3}=-4
$$

$$
3 L 1+L 3: \quad-3 x_{2}+2 x_{3}=13
$$

Step one:

Use first x_{1} term [upper left matrix entry] to eliminate all other x_{1} terms [change rest of first column to 0]:

$$
\begin{array}{rrr}
L 1: & x_{1}-3 x_{2}-2 x_{3}= & 6 \\
L 2: & 2 x_{1}-4 x_{2}-3 x_{3}= & 8 \\
L 3: & -3 x_{1}+6 x_{2}+8 x_{3}= & -5
\end{array} \quad\left[\begin{array}{ccc:c}
1 & -3 & -2 & 6 \\
2 & -4 & -3 & 8 \\
-3 & 6 & 8 & -5
\end{array}\right]
$$

Subtract $2 \times$ first from second Add $3 \times$ first to third:

| $L 1:$ | $x_{1}-3 x_{2}-2 x_{3}$ | $=6$ |
| ---: | :--- | ---: | :--- |
| $L 2-2 L 1:$ | $2 x_{2}+x_{3}$ | $=-4$ |
| $3 L 1+L 3:$ | $-3 x_{2}+2 x_{3}$ | $=13$ |\(\quad\left[\begin{array}{ccc:c}1 \& -3 \& -2 \& 6

0 \& 2 \& 1 \& -4

0 \& -3 \& 2 \& 13\end{array}\right]\)

Move on to Step two! - the second column

Step two:

$$
\begin{array}{rrr}
L 1: & x_{1}-3 x_{2}-2 x_{3}= & 6 \\
L 2: & 2 x_{2}+x_{3}= & -4 \\
L 3: & -3 x_{2}+2 x_{3}= & 13
\end{array}
$$

Step two:

L1: $\quad x_{1}-3 x_{2}-2 x_{3}=6$
L2: $\quad 2 x_{2}+x_{3}=-4$
L3: $\quad-3 x_{2}+2 x_{3}=13$
Add $\frac{3}{2} \times \mathrm{L} 2$ to L 1 and L3:

$$
\begin{aligned}
L 1+\frac{3}{2} L 2: & x_{1} & -\frac{1}{2} x_{3} & = \\
L 2: & 2 x_{2}+x_{3} & = & -4 \\
L 3+\frac{3}{2} L 2: & \frac{7}{2} x_{3} & = & 7
\end{aligned}
$$

Step two:

$$
\begin{array}{rrr}
L 1: & x_{1}-3 x_{2}-2 x_{3}= & 6 \\
L 2: & 2 x_{2}+x_{3}= & -4 \\
L 3: & -3 x_{2}+2 x_{3}= & 13
\end{array}
$$

$$
\left[\begin{array}{ccc:c}
1 & -3 & -2 & 6 \\
0 & 2 & 1 & -4 \\
0 & -3 & 2 & 13
\end{array}\right]
$$

Add $\frac{3}{2} \times \mathrm{L} 2$ to L 1 and L3:

$$
\left[\begin{array}{ccc:c}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 2 & 1 & -4 \\
0 & 0 & \frac{7}{2} & 7
\end{array}\right]
$$

$$
\begin{array}{rlrr}
L 1+\frac{3}{2} L 2: & x_{1} & -\frac{1}{2} x_{3}= & 0 \\
L 2: & & 2 x_{2}+x_{3}= & -4
\end{array}
$$

$$
\text { Multiply L3 by } \frac{2}{7}
$$

$$
L 3+\frac{3}{2} L 2: \quad \frac{7}{2} x_{3}=\quad 7
$$

$$
\left[\begin{array}{ccc:c}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 2 & 1 & -4 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

Move on to Step three! - the third column

Step three:

$$
\begin{aligned}
L 1: & x_{1} & -\frac{1}{2} x_{3} & =0 \\
L 2: & & 2 x_{2}+x_{3} & =-4 \\
L 3: & & x_{3} & =2
\end{aligned}
$$

Subtract L3 from L2; add $\frac{1}{2}$ L3 to L1:

$$
\begin{aligned}
L 1+\frac{1}{2} L 3: & x_{1} & = & 1 \\
L 2-\frac{1}{2} L 3: & 2 x_{2} & = & -6 \\
L 3: & & x_{3} & =2
\end{aligned}
$$

Step three:

$$
\left.\left.\begin{array}{cccc}
L 1: & x_{1} & -\frac{1}{2} x_{3}= & 0 \\
L 2: & 2 x_{2}+x_{3}= & -4 \\
L 3: & x_{3}= & 2
\end{array}\right] \begin{array}{ccc:c}
1 & 0 & -\frac{1}{2} & 0 \\
0 & 2 & 1 & -4 \\
0 & 0 & 1 & 2
\end{array}\right],\left[\begin{array}{ccc:c}
1 & 0 & 0 & 1 \\
0 & 2 & 0 & -6 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

$$
\left.\begin{array}{rlll}
L 1+\frac{1}{2} L 3: & x_{1} & = & 1
\end{array} \quad \begin{array}{cc}
\text { Multiply L2 by } \frac{1}{2} \\
L 2-\frac{1}{2} L 3: & 2 x_{2}
\end{array}\right)=-6 \quad\left[\begin{array}{ccc:c}
1 & 0 & 0 & 1 \\
0 & 1 & 0 & -3 \\
0 & 0 & 1 & 2
\end{array}\right]
$$

We're done: $\left(x_{1}, x_{2}, x_{3}\right)=(1,-3,2)$

What can go wrong?

$$
\begin{aligned}
& x_{1}+2 x_{2}=3 \\
& x_{1}+2 x_{2}=4
\end{aligned}
$$

What can go wrong?

$$
\begin{aligned}
& x_{1}+2 x_{2}=3 \\
& x_{1}+2 x_{2}=4
\end{aligned}
$$

Subtract L1 from L2:

$$
\begin{array}{r}
x_{1}+2 x_{2}=3 \\
0=1
\end{array}
$$

inconsistent
NO SOLUTION

What can go wrong?

$$
\begin{aligned}
& x_{1}+2 x_{2}=3 \\
& x_{1}+2 x_{2}=4
\end{aligned}
$$

$$
\begin{array}{r}
x_{1}+2 x_{2}=3 \\
2 x_{1}+4 x_{2}=6
\end{array}
$$

Subtract L1 from L2:

$$
\begin{array}{r}
x_{1}+2 x_{2}=3 \\
0=1
\end{array}
$$

inconsistent
NO SOLUTION

What can go wrong?

$$
\begin{aligned}
& x_{1}+2 x_{2}=3 \\
& x_{1}+2 x_{2}=4
\end{aligned}
$$

Subtract L1 from L2:

$$
\begin{array}{r}
x_{1}+2 x_{2}=3 \\
0=1
\end{array}
$$

inconsistent
NO SOLUTION

$$
\begin{array}{r}
x_{1}+2 x_{2}=3 \\
2 x_{1}+4 x_{2}=6
\end{array}
$$

Subtract 2L1 from L2:

$$
\begin{aligned}
x_{1}+2 x_{2} & =3 \\
0 & =0
\end{aligned}
$$

redundant
SOLUTIONS INFINITE

Configurations

If the system has 3 variables, an equation determines a plane in \mathbb{R}^{3}.

Configurations

If the system has 3 variables, an equation determines a plane in \mathbb{R}^{3}.
So a solution will be the intersection of 3 planes: P_{1}, P_{2}, P_{3} :

Configurations

If the system has 3 variables, an equation determines a plane in \mathbb{R}^{3}. So a solution will be the intersection of 3 planes: P_{1}, P_{2}, P_{3} :

Configurations

If the system has 3 variables, an equation determines a plane in \mathbb{R}^{3}. So a solution will be the intersection of 3 planes: P_{1}, P_{2}, P_{3} :

Question?

George tells you the system of equations

$$
\begin{aligned}
5 x_{1}+2 x_{2}-3 x_{3} & =4 \\
12 x_{1}-7 x_{2}+2 x_{3} & =8 \\
-3 x_{1}+4 x_{2}+5 x_{3} & =10
\end{aligned}
$$

has exactly three solutions.

Question?

George tells you the system of equations

$$
\begin{aligned}
5 x_{1}+2 x_{2}-3 x_{3} & =4 \\
12 x_{1}-7 x_{2}+2 x_{3} & =8 \\
-3 x_{1}+4 x_{2}+5 x_{3} & =10
\end{aligned}
$$

has exactly three solutions.
A) George is probably right, since he's Honest George.

Question?

George tells you the system of equations

$$
\begin{aligned}
5 x_{1}+2 x_{2}-3 x_{3} & =4 \\
12 x_{1}-7 x_{2}+2 x_{3} & =8 \\
-3 x_{1}+4 x_{2}+5 x_{3} & =10
\end{aligned}
$$

has exactly three solutions.
A) George is probably right, since he's Honest George.
B) George is probably wrong.

Question?

George tells you the system of equations

$$
\begin{aligned}
5 x_{1}+2 x_{2}-3 x_{3} & =4 \\
12 x_{1}-7 x_{2}+2 x_{3} & =8 \\
-3 x_{1}+4 x_{2}+5 x_{3} & =10
\end{aligned}
$$

has exactly three solutions.
A) George is probably right, since he's Honest George.
B) George is probably wrong.
C) George is definitely right.

Question?

George tells you the system of equations

$$
\begin{aligned}
5 x_{1}+2 x_{2}-3 x_{3} & =4 \\
12 x_{1}-7 x_{2}+2 x_{3} & =8 \\
-3 x_{1}+4 x_{2}+5 x_{3} & =10
\end{aligned}
$$

has exactly three solutions.
A) George is probably right, since he's Honest George.
B) George is probably wrong.
C) George is definitely right.
D) George is definitely wrong.

Question?

George tells you the system of equations

$$
\begin{aligned}
5 x_{1}+2 x_{2}-3 x_{3} & =4 \\
12 x_{1}-7 x_{2}+2 x_{3} & =8 \\
-3 x_{1}+4 x_{2}+5 x_{3} & =10
\end{aligned}
$$

has exactly three solutions.
A) George is probably right, since he's Honest George.
B) George is probably wrong.
C) George is definitely right.
D) George is definitely wrong.
E) My brain is full.

Vector

An m-vector [column vector, vector in \mathbb{R}^{m}] is an $m \times 1$ matrix:

$$
\vec{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right]
$$

Vector

An m-vector [column vector, vector in \mathbb{R}^{m}] is an $m \times 1$ matrix:

$$
\vec{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right]
$$

Can add two m-vectors in the obvious way, or multiply a vector by a real number:

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{1}+b_{2} \\
a_{1}+b_{3} \\
\vdots \\
a_{1}+b_{m}
\end{array}\right] ;
$$

Vector

An m-vector [column vector, vector in \mathbb{R}^{m}] is an $m \times 1$ matrix:

$$
\vec{a}=\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right]
$$

Can add two m-vectors in the obvious way, or multiply a vector by a real number:

$$
\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right]=\left[\begin{array}{c}
a_{1}+b_{1} \\
a_{1}+b_{2} \\
a_{1}+b_{3} \\
\vdots \\
a_{1}+b_{m}
\end{array}\right] ; \quad c\left[\begin{array}{c}
a_{1} \\
a_{2} \\
a_{3} \\
\vdots \\
a_{m}
\end{array}\right]=\left[\begin{array}{c}
c a_{1} \\
c a_{2} \\
c a_{3} \\
\vdots \\
c a_{m}
\end{array}\right]
$$

Do not multiply two vectors together like this.

Vector Operations

Examples:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] ;
$$

Vector Operations

Examples:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] ; \quad-1 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right]
$$

Vector Operations

Examples:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] ; \quad-1 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
-1 \\
-2 \\
-3
\end{array}\right]
$$

$$
3 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-7 \cdot\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]+2 \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=
$$

Vector Operations

Examples:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] ; \quad-1 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2 \\
-3
\end{array}\right]
$$

$$
\begin{aligned}
& 3 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-7 \cdot\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]+2 \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]= \\
& {\left[\begin{array}{c}
3 \cdot 1-7 \cdot 0+2 \cdot 1 \\
3 \cdot 2-7 \cdot 2+2 \cdot(-1) \\
3 \cdot 3-7 \cdot 4+2 \cdot 0
\end{array}\right]=}
\end{aligned}
$$

Vector Operations

Examples:

$$
\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]+\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right]=\left[\begin{array}{l}
5 \\
7 \\
9
\end{array}\right] ; \quad-1 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{c}
-1 \\
-2 \\
-3
\end{array}\right]
$$

$$
\begin{aligned}
& 3 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-7 \cdot\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]+2 \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]= \\
& {\left[\begin{array}{c}
3 \cdot 1-7 \cdot 0+2 \cdot 1 \\
3 \cdot 2-7 \cdot 2+2 \cdot(-1) \\
3 \cdot 3-7 \cdot 4+2 \cdot 0
\end{array}\right]=\left[\begin{array}{c}
5 \\
-10 \\
-19
\end{array}\right]}
\end{aligned}
$$

Question:

$$
7 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-3 \cdot\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]-2 \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=
$$

Question:

$$
7 \cdot\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]-3 \cdot\left[\begin{array}{l}
0 \\
2 \\
4
\end{array}\right]-2 \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]=
$$

A) $\left[\begin{array}{c}5 \\ -10 \\ -19\end{array}\right]$
B) $\left[\begin{array}{c}5 \\ -9 \\ 10\end{array}\right]$
C) $\left[\begin{array}{c}5 \\ 10 \\ 9\end{array}\right]$
D) $\left[\begin{array}{c}5 \\ -19 \\ -10\end{array}\right]$
E) $\left[\begin{array}{c}5 \\ 10 \\ 19\end{array}\right]$

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail;

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail;

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail;

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail;

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail;

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail;

Picturing Vectors

2 - and 3 -vectors:

- think of vector as arrow from 0
- multiply number with vector via scaling.
- add vectors head-to-tail; parallelogram rule;

Application

Gives more flexible way to describe a line.

Application

Gives more flexible way to describe a line.
For a line through a point p, in direction \vec{d}, use

$$
\vec{x}=\vec{p}+t \cdot \vec{d}, \quad t \in \mathbb{R}
$$

Argument:

Application

Gives more flexible way to describe a line.
For a line through a point p, in direction \vec{d}, use

$$
\vec{x}=\vec{p}+1 \cdot \vec{d}, \quad t=1
$$

Argument:

Application

Gives more flexible way to describe a line.
For a line through a point p, in direction \vec{d}, use

$$
\vec{x}=\vec{p}+-1 \cdot \vec{d}, \quad t=-1
$$

Argument:

Application

Gives more flexible way to describe a line.
For a line through a point p, in direction \vec{d}, use

$$
\vec{x}=\vec{p}+t \cdot \vec{d}, \quad t \in \mathbb{R}
$$

Argument:

Question:

Pictured are points $u, v \in \mathbb{R}^{2}$.

Question:

Pictured are points $u, v \in \mathbb{R}^{2}$. Which point represents $\vec{u}-3 \vec{v}$?

Question:

Pictured are points $u, v \in \mathbb{R}^{2}$. Which point represents $\vec{u}-3 \vec{v}$?

Question:

Pictured are points $u, v \in \mathbb{R}^{2}$. Which point represents $\vec{u}-3 \vec{v}$?

Question:

Pictured are points $u, v \in \mathbb{R}^{2}$. Which point represents $\vec{u}-3 \vec{v}$?

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x}$
(commutative)

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)
- $\vec{z}+\overrightarrow{0}=\overrightarrow{0}+\vec{z}=\vec{z}$

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)
- $\vec{z}+\overrightarrow{0}=\overrightarrow{0}+\vec{z}=\vec{z}$
- $\vec{x}+(-\vec{x})=-\vec{x}+\vec{x}=\overrightarrow{0}$

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)
- $\vec{z}+\overrightarrow{0}=\overrightarrow{0}+\vec{z}=\vec{z}$
- $\vec{x}+(-\vec{x})=-\vec{x}+\vec{x}=\overrightarrow{0}$
- $t(\vec{x}+\vec{y})=t \vec{x}+t \vec{y} \quad$ (distributive law)

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)
- $\vec{z}+\overrightarrow{0}=\overrightarrow{0}+\vec{z}=\vec{z}$
- $\vec{x}+(-\vec{x})=-\vec{x}+\vec{x}=\overrightarrow{0}$
- $t(\vec{x}+\vec{y})=t \vec{x}+t \vec{y}$
(distributive law)
- $(s+t) \vec{x}=s \vec{x}+t \vec{x}$
(distributive law)

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)
- $\vec{z}+\overrightarrow{0}=\overrightarrow{0}+\vec{z}=\vec{z}$
- $\vec{x}+(-\vec{x})=-\vec{x}+\vec{x}=\overrightarrow{0}$
- $t(\vec{x}+\vec{y})=t \vec{x}+t \vec{y}$
(distributive law)
- $(s+t) \vec{x}=s \vec{x}+t \vec{x} \quad$ (distributive law)
- $s(t \vec{x})=(s t) \vec{x} \quad$ (associative)

Properties of Vectors

For all $\vec{w}, \vec{x}, \vec{y} \in \mathbb{R}^{n}$ and $s, t \in \mathbb{R}$, we have the following.

- $\vec{x}+\vec{y}=\vec{y}+\vec{x} \quad$ (commutative)
- $(\vec{x}+\vec{y})+\vec{w}=\vec{x}+(\vec{y}+\vec{w}) \quad$ (associative)
- $\vec{z}+\overrightarrow{0}=\overrightarrow{0}+\vec{z}=\vec{z}$
- $\vec{x}+(-\vec{x})=-\vec{x}+\vec{x}=\overrightarrow{0}$
- $t(\vec{x}+\vec{y})=t \vec{x}+t \vec{y}$
(distributive law)
- $(s+t) \vec{x}=s \vec{x}+t \vec{x} \quad$ (distributive law)
- $s(t \vec{x})=(s t) \vec{x} \quad$ (associative)
- $1 \vec{x}=\vec{x}$

Linear Combination

Definition

Suppose $\left\{t_{1}, t_{2} \ldots t_{k}\right\}$ are all real numbers.
The vector

$$
\vec{y}=t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}
$$

is called a linear combination of the vectors $\left\{\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{k}\right\}$.

Linear Combination

Definition

Suppose $\left\{t_{1}, t_{2} \ldots t_{k}\right\}$ are all real numbers.
The vector

$$
\vec{y}=t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}
$$

is called a linear combination of the vectors $\left\{\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{k}\right\}$.
Sample problem:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}, \vec{b}\right\}$ in \mathbb{R}^{m}, find real numbers $\left\{t_{1}, t_{2} \ldots t_{n}\right\}$ so that

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}
$$

Linear Combination

Definition

Suppose $\left\{t_{1}, t_{2} \ldots t_{k}\right\}$ are all real numbers.
The vector

$$
\vec{y}=t_{1} \vec{v}_{1}+\cdots+t_{k} \vec{v}_{k}
$$

is called a linear combination of the vectors $\left\{\vec{v}_{1}, \vec{v}_{2} \ldots \vec{v}_{k}\right\}$.
Sample problem:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}, \vec{b}\right\}$ in \mathbb{R}^{m}, find real numbers $\left\{t_{1}, t_{2} \ldots t_{n}\right\}$ so that

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}
$$

Off hand, could have any number of $\left\{t_{1}, t_{2} \ldots t_{n}\right\}$ solutions.

Linear Combination

How to think about solving for $\left\{t_{1}, t_{2} \ldots t_{n}\right\}$ in the equation

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

Linear Combination

How to think about solving for $\left\{t_{1}, t_{2} \ldots t_{n}\right\}$ in the equation

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

Let

$$
\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right] ; \quad \vec{a}_{j}=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
a_{3 j} \\
\vdots \\
a_{m j}
\end{array}\right] \quad \text { for } 1 \leq j \leq n
$$

Linear Combination

How to think about solving for $\left\{t_{1}, t_{2} \ldots t_{n}\right\}$ in the equation

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

Let

$$
\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{m}
\end{array}\right] ; \quad \vec{a}_{j}=\left[\begin{array}{c}
a_{1 j} \\
a_{2 j} \\
a_{3 j} \\
\vdots \\
a_{m j}
\end{array}\right] \quad \text { for } 1 \leq j \leq n
$$

Then for any $1 \leq i \leq m$, the $i^{\text {th }}$ row of the equation becomes:

$$
\begin{gathered}
t_{1} a_{i 1}+t_{2} a_{i 2}+\cdots+t_{n} a_{i n}=b_{i} \text { or } \\
a_{i 1} t_{1}+a_{i 2} t_{2}+\cdots+a_{i n} t_{n}=b_{i}
\end{gathered}
$$

Linear Combination

In other words, solving

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

is the same as solving this system of m linear equations:

$$
\begin{gathered}
a_{11} t_{1}+\ldots+a_{1 n} t_{n}=b_{1} \\
a_{21} t_{1}+\ldots+a_{2 n} t_{n}=b_{2} \\
\vdots \\
a_{m 1} t_{1}+\ldots+a_{m n} t_{n}=b_{m}
\end{gathered}
$$

We just learned how to do this!

Linear Combination

Solving

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

is the same as solving a system of m linear equations.

Linear Combination

Solving

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

is the same as solving a system of m linear equations.
The system has augmented matrix

$$
\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

Linear Combination

Solving

$$
t_{1} \vec{a}_{1}+\cdots+t_{n} \vec{a}_{n}=\vec{b}:
$$

is the same as solving a system of m linear equations.
The system has augmented matrix

$$
\left[\begin{array}{cccc:c}
a_{11} & a_{12} & \ldots & a_{1 n} & b_{1} \\
a_{21} & a_{22} & \ldots & a_{2 n} & b_{2} \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n} & b_{m}
\end{array}\right]
$$

Since each \vec{a}_{j} is a column of i numbers, can just write

$$
\left[\begin{array}{lllll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n} & \vec{b}
\end{array}\right]
$$

Example

Suppose

$$
\vec{a}_{1}=\left[\begin{array}{l}
0 \\
2 \\
4 \\
8
\end{array}\right] \quad \vec{a}_{2}=\left[\begin{array}{l}
0 \\
2 \\
4 \\
8
\end{array}\right] \quad \vec{a}_{3}=\left[\begin{array}{c}
6 \\
-1 \\
1 \\
-1
\end{array}\right] \quad \vec{a}_{4}=\left[\begin{array}{c}
0 \\
6 \\
10 \\
26
\end{array}\right]
$$

and want to find $c_{1}, c_{2}, c_{3}, c_{4}$ so that

$$
c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}+c_{3} \vec{a}_{3}+c_{4} \vec{a}_{4}=\left[\begin{array}{c}
12 \\
4 \\
13 \\
23
\end{array}\right]
$$

Example

This translates to the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{cccc:c}
0 & 0 & 6 & 0 & 12 \\
2 & 2 & -1 & 6 & 4 \\
4 & 4 & 1 & 10 & 13 \\
8 & 8 & -1 & 26 & 23
\end{array}\right]
$$

Example

This translates to the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{cccc:c}
0 & 0 & 6 & 0 & 12 \\
2 & 2 & -1 & 6 & 4 \\
4 & 4 & 1 & 10 & 13 \\
8 & 8 & -1 & 26 & 23
\end{array}\right]
$$

which reduces to:

$$
\left[\begin{array}{llll:l}
1 & 1 & 0 & 0 & \frac{3}{2} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Example

This translates to the system of linear equations whose augmented matrix is

$$
\left[\begin{array}{cccc:c}
0 & 0 & 6 & 0 & 12 \\
2 & 2 & -1 & 6 & 4 \\
4 & 4 & 1 & 10 & 13 \\
8 & 8 & -1 & 26 & 23
\end{array}\right]
$$

which reduces to:

$$
\left[\begin{array}{llll:l}
1 & 1 & 0 & 0 & \frac{3}{2} \\
0 & 0 & 1 & 0 & 2 \\
0 & 0 & 0 & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

and so has general solution

$$
c_{2}=\text { anything, } c_{1}=\frac{3}{2}-c_{2}, c_{3}=2, c_{4}=\frac{1}{2}
$$

Span

Definition

Given a collection $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ of vectors in \mathbb{R}^{m}, the set of all linear combinations of these vectors, that is all vectors that can be written as

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}
$$

for some $c_{1}, \ldots, c_{k} \in \mathbb{R}$ is denoted

$$
\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

and is called the span of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.

Span

Definition

Given a collection $\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{k}\right\}$ of vectors in \mathbb{R}^{m}, the set of all linear combinations of these vectors, that is all vectors that can be written as

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}
$$

for some $c_{1}, \ldots, c_{k} \in \mathbb{R}$ is denoted

$$
\operatorname{Span}\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}
$$

and is called the span of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.
Easy example: If $k=1$ so there is only one vector \vec{v}, then $\operatorname{Span}\{\vec{v}\}$ is just all vectors that are multiples of \vec{v}. That is, $\operatorname{Span}\{\vec{v}\}=\{c \vec{v} \mid c \in \mathbb{R}\}$

Span

Picturing the span when $m=2,3$:

Span

Picturing the span when $m=2,3$:
When there is only one vector \vec{v} then $\operatorname{Span}\{\vec{v}\}=\{c \vec{v} \mid c \in \mathbb{R}\}$ is just the line that contains both $\overrightarrow{0}$ (take $c=0$) and \vec{v} (take $c=1$).

Span

Picturing the span when $m=2,3$:
When there is only one vector \vec{v} then $\operatorname{Span}\{\vec{v}\}=\{c \vec{v} \mid c \in \mathbb{R}\}$ is just the line that contains both $\overrightarrow{0}$ (take $c=0$) and \vec{v} (take $c=1$).

With two vectors \vec{u} and $\vec{v}, \operatorname{Span}\{\vec{u}, \vec{v}\}=\left\{c_{1} \vec{u}+c_{2} \vec{v}\right\}$ pictured via the parallelogram rule (Span $=$ entire plane; $c_{i} \geq 0$ highlighted):

Span

So we can think of the set of all solutions as

$$
\left[\begin{array}{c}
\frac{3}{2} \\
0 \\
2 \\
\frac{1}{2}
\end{array}\right]+\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

Span

So we can think of the set of all solutions as

$$
\left[\begin{array}{c}
\frac{3}{2} \\
0 \\
2 \\
\frac{1}{2}
\end{array}\right]+\operatorname{Span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

So we can picture the solution as a line in the direction of the second vector, going through the point given by the first vector (but in \mathbb{R}^{4} !)

Matrix Multiplication

Definition
The linear combination

$$
x_{1} \vec{a}_{1}+\cdots+x_{k} \vec{a}_{k}
$$

is abbreviated

$$
\left[\begin{array}{lllll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{k}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{k}
\end{array}\right]
$$

Here $\left[\begin{array}{lllll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{k}\end{array}\right]$ is the matrix A with $i^{\text {th }}$ column \vec{a}_{i}.

Matrix Multiplication

Simplest example: each $\overrightarrow{a_{i}} \in \mathbb{R}^{1}$, i. e. each column in the matrix is just a number:

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \ldots & a_{k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{k}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots a_{k} b_{k}
$$

Matrix Multiplication

Simplest example: each $\overrightarrow{a_{i}} \in \mathbb{R}^{1}$, i. e. each column in the matrix is just a number:

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \ldots & a_{k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{k}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots a_{k} b_{k}
$$

so

$$
\left[\begin{array}{llll}
1 & -2 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right]=
$$

Matrix Multiplication

Simplest example: each $\overrightarrow{a_{i}} \in \mathbb{R}^{1}$, i. e. each column in the matrix is just a number:

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \ldots & a_{k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{k}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots a_{k} b_{k}
$$

so

$$
\left[\begin{array}{llll}
1 & -2 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right]=
$$

$$
1 \cdot 7+(-2) \cdot 3+3 \cdot 1+(-4) \cdot 2=7-6+3-8=-4
$$

Matrix Multiplication

Simplest example: each $\overrightarrow{a_{i}} \in \mathbb{R}^{1}$, i. e. each column in the matrix is just a number:

$$
\left[\begin{array}{lllll}
a_{1} & a_{2} & a_{3} & \ldots & a_{k}
\end{array}\right]\left[\begin{array}{c}
b_{1} \\
b_{2} \\
b_{3} \\
\vdots \\
b_{k}
\end{array}\right]=a_{1} b_{1}+a_{2} b_{2}+\ldots a_{k} b_{k}
$$

so

$$
\left[\begin{array}{llll}
1 & -2 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
7 \\
3 \\
1 \\
2
\end{array}\right]=
$$

$$
1 \cdot 7+(-2) \cdot 3+3 \cdot 1+(-4) \cdot 2=7-6+3-8=-4 \in \mathbb{R}^{1}
$$

Question

$$
\left[\begin{array}{llll}
1 & -2 & 3 & -4
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
2 \\
1
\end{array}\right]=
$$

A) -3
B) -6
C) -9
D) 6
E) 9

Matrix-vector Multiplication

More complicated example: For $\overrightarrow{a_{i}} \in \mathbb{R}^{2}, i=1,2,3$:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=2\left[\begin{array}{l}
2 \\
4
\end{array}\right]+1\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

Matrix-vector Multiplication

More complicated example: For $\overrightarrow{a_{i}} \in \mathbb{R}^{2}, i=1,2,3$:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=2\left[\begin{array}{l}
2 \\
4
\end{array}\right]+1\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

SO

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right]
$$

Matrix-vector Multiplication

More complicated example: For $\overrightarrow{a_{i}} \in \mathbb{R}^{2}, i=1,2,3$:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=2\left[\begin{array}{l}
2 \\
4
\end{array}\right]+1\left[\begin{array}{c}
3 \\
-2
\end{array}\right]+4\left[\begin{array}{c}
-1 \\
5
\end{array}\right]
$$

so

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right] \in \mathbb{R}^{2}
$$

Think of doing the simple case on each row of the matrix A :

Matrix-vector Multiplication

Apply simple case to first row:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right]
$$

Matrix-vector Multiplication

Apply simple case to first row:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right]
$$

Apply simple case to second row:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right]
$$

Matrix-vector Multiplication

Apply simple case to first row:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right]
$$

Apply simple case to second row:

$$
\left[\begin{array}{ccc}
2 & 3 & -1 \\
4 & -2 & 5
\end{array}\right]\left[\begin{array}{l}
2 \\
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
2 \cdot 2+3 \cdot 1-1 \cdot 4 \\
4 \cdot 2-2 \cdot 1+5 \cdot 4
\end{array}\right]=\left[\begin{array}{c}
3 \\
26
\end{array}\right] \in \mathbb{R}^{2}
$$

Matrix-vector Multiplication

Further abbreviation:
Use vector notation:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{k}
\end{array}\right]=\vec{x}
$$

then

Matrix-vector Multiplication

Further abbreviation:
Use vector notation:

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{k}
\end{array}\right]=\vec{x}
$$

then

$$
x_{1} \vec{a}_{1}+\cdots+x_{k} \vec{a}_{k}=\left[\begin{array}{lllll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{k}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{k}
\end{array}\right]=A \vec{x}
$$

Matrix-vector Multiplication

Summary: For A an $m \times n$ matrix, and a vector $\vec{x} \in \mathbb{R}^{n}$, multiplication $A \vec{x}$ is defined and gives a vector in \mathbb{R}^{m}.

Multiplication has two important properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}, A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$

Matrix-vector Multiplication

Summary: For A an $m \times n$ matrix, and a vector $\vec{x} \in \mathbb{R}^{n}$, multiplication $A \vec{x}$ is defined and gives a vector in \mathbb{R}^{m}.

Multiplication has two important properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}, A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$
- For any vector $\vec{u} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}, A(c \vec{u})=c(A \vec{u})$.

Matrix-vector Multiplication

Summary: For A an $m \times n$ matrix, and a vector $\vec{x} \in \mathbb{R}^{n}$, multiplication $A \vec{x}$ is defined and gives a vector in \mathbb{R}^{m}.

Multiplication has two important properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}, A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$
- For any vector $\vec{u} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}, A(c \vec{u})=c(A \vec{u})$.

For example:

$$
A(\vec{u}+\vec{v})=\left[\begin{array}{lllll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{n}
\end{array}\right]\left(\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n}
\end{array}\right]\right)=
$$

Matrix-vector Multiplication

Summary: For A an $m \times n$ matrix, and a vector $\vec{x} \in \mathbb{R}^{n}$, multiplication $A \vec{x}$ is defined and gives a vector in \mathbb{R}^{m}.

Multiplication has two important properties:

- For any vectors $\vec{u}, \vec{v} \in \mathbb{R}^{n}, A(\vec{u}+\vec{v})=A \vec{u}+A \vec{v}$
- For any vector $\vec{u} \in \mathbb{R}^{n}$ and any $c \in \mathbb{R}, A(c \vec{u})=c(A \vec{u})$.

For example:

$$
\begin{gathered}
A(\vec{u}+\vec{v})=\left[\begin{array}{lllll}
\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{n}
\end{array}\right]\left(\left[\begin{array}{c}
u_{1} \\
u_{2} \\
u_{3} \\
\vdots \\
u_{n}
\end{array}\right]+\left[\begin{array}{c}
v_{1} \\
v_{2} \\
v_{3} \\
\vdots \\
v_{n}
\end{array}\right]\right)= \\
\left(u_{1}+v_{1}\right) \vec{a}_{1}+\cdots+\left(u_{n}+v_{n}\right) \vec{a}_{n}=\left(u_{1} \vec{a}_{1}+\cdots+u_{n} \vec{a}_{n}\right)+\left(v_{1} \vec{a}_{1}+\cdots+v_{n} \vec{a}_{n}\right)= \\
A \vec{u}+A \vec{v}
\end{gathered}
$$

Question

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & -2 & 3 & -4 \\
-2 & 1 & -4 & 3
\end{array}\right]\left[\begin{array}{l}
3 \\
7 \\
2 \\
1
\end{array}\right]=} \\
\begin{array}{llll}
\text { A) }\left[\begin{array}{c}
7 \\
-9
\end{array}\right] & \text { В) }\left[\begin{array}{lll}
-9 \\
-4
\end{array}\right] & \text { C) }\left[\begin{array}{c}
-9 \\
1
\end{array}\right] & \text { D) }\left[\begin{array}{l}
-4 \\
-9
\end{array}\right]
\end{array} \\
\text { E) } \pi^{e}
\end{gathered}
$$

Matrix Equation

Sample problem from before:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$ and \vec{b} in \mathbb{R}^{m}, find real numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ so that

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b}
$$

Matrix Equation

Sample problem from before:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$ and \vec{b} in \mathbb{R}^{m}, find real numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ so that

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b}
$$

Might arise from the question: Is \vec{b} in $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$?

Matrix Equation

Sample problem from before:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$ and \vec{b} in \mathbb{R}^{m}, find real numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ so that

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b} .
$$

Might arise from the question: Is \vec{b} in $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$?
New: translation to matrix equation:
Given $m \times n$ matrix A and $\vec{b} \in \mathbb{R}^{m}$ find a vector $\vec{x} \in \mathbb{R}^{n}$ so that

$$
A \vec{x}=\vec{b}
$$

Matrix Equation

Sample problem from before:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$ and \vec{b} in \mathbb{R}^{m}, find real numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ so that

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b} .
$$

Might arise from the question: Is \vec{b} in $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$?
New: translation to matrix equation:
Given $m \times n$ matrix A and $\vec{b} \in \mathbb{R}^{m}$ find a vector $\vec{x} \in \mathbb{R}^{n}$ so that

$$
A \vec{x}=\vec{b}
$$

where $A=\left[\begin{array}{lllll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{n}\end{array}\right]$.

Matrix Equation

Sample problem from before:
Given vectors $\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$ and \vec{b} in \mathbb{R}^{m}, find real numbers $\left\{x_{1}, x_{2} \ldots x_{n}\right\}$ so that

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\vec{b}
$$

Might arise from the question: Is \vec{b} in $\operatorname{Span}\left\{\vec{a}_{1}, \vec{a}_{2} \ldots \vec{a}_{n}\right\}$?
New: translation to matrix equation:
Given $m \times n$ matrix A and $\vec{b} \in \mathbb{R}^{m}$ find a vector $\vec{x} \in \mathbb{R}^{n}$ so that

$$
A \vec{x}=\vec{b}
$$

where $A=\left[\begin{array}{lllll}\vec{a}_{1} & \vec{a}_{2} & \vec{a}_{3} & \ldots & \vec{a}_{n}\end{array}\right]$. Note: the Matrix-vector multiplication $A \vec{x}$ makes sense only if the number of columns in A matches the number of entries in x.

Background

Background thoughts:

If two non-trivial vectors \vec{x}_{1}, \vec{x}_{2} both lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ is just that line.

Background

Background thoughts:

If two non-trivial vectors \vec{x}_{1}, \vec{x}_{2} both lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ is just that line.

On the other hand, if they don't lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ consists of an entire plane.

Background

Background thoughts:
If two non-trivial vectors \vec{x}_{1}, \vec{x}_{2} both lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ is just that line.

On the other hand, if they don't lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ consists of an entire plane.
(The plane determined by the heads of the vectors and $\overrightarrow{0}$.)

Background

Background thoughts:
If two non-trivial vectors \vec{x}_{1}, \vec{x}_{2} both lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ is just that line.

On the other hand, if they don't lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}\right\}$ consists of an entire plane.
(The plane determined by the heads of the vectors and $\overrightarrow{0}$.)
So the span of two vectors may be a plane, or it could be something simpler: either a line, or even just $\overrightarrow{0}$ in the case that $\vec{x}_{1}=\overrightarrow{0}=\vec{x}_{2}$.

Background

Similarly, if three non-trivial vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ all lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is just that line.

Background

Similarly, if three non-trivial vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ all lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is just that line.

If they don't all lie on the same line, but lie on the same plane, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is just that plane.

Background

Similarly, if three non-trivial vectors $\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}$ all lie on the same line, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is just that line.

If they don't all lie on the same line, but lie on the same plane, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ is just that plane.

If they don't all lie in the same plane, then $\operatorname{Span}\left\{\vec{x}_{1}, \vec{x}_{2}, \vec{x}_{3}\right\}$ looks like space.

Linear Independence

How do we put these ideas into math lingo, so we can be precise?
Definition
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly independent if and only if the only solution to the equation

$$
x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is the solution $x_{i}=0$ for $1 \leq i \leq k$.
Conversely, the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent if there are real numbers c_{1}, \ldots, c_{k}, not all zero, such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

Linear Independence

How do we put these ideas into math lingo, so we can be precise?
Definition
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly independent if and only if the only solution to the equation

$$
x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is the solution $x_{i}=0$ for $1 \leq i \leq k$.
Conversely, the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent if there are real numbers c_{1}, \ldots, c_{k}, not all zero, such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

Idea: if the set is linearly independent, then span is big as possible.

Linear Independence

How do we put these ideas into math lingo, so we can be precise?

Definition

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly independent if and only if the only solution to the equation

$$
x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is the solution $x_{i}=0$ for $1 \leq i \leq k$.
Conversely, the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent if there are real numbers c_{1}, \ldots, c_{k}, not all zero, such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0} .
$$

Idea: if the set is linearly independent, then span is big as possible. If the set is linearly dependent then span is "thinner" than it has to be;

Linear Independence

How do we put these ideas into math lingo, so we can be precise?

Definition

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly independent if and only if the only solution to the equation

$$
x_{1} \vec{v}_{1}+\cdots+x_{k} \vec{v}_{k}=\overrightarrow{0}
$$

is the solution $x_{i}=0$ for $1 \leq i \leq k$.
Conversely, the set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent if there are real numbers c_{1}, \ldots, c_{k}, not all zero, such that

$$
c_{1} \vec{v}_{1}+\cdots+c_{k} \vec{v}_{k}=\overrightarrow{0} .
$$

Idea: if the set is linearly independent, then span is big as possible. If the set is linearly dependent then span is "thinner" than it has to be; you could even throw some away and not change the span.

In pictures:

$\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ linearly dependent.

$\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ linearly independent.

Linear Independence

If any subset of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, so is the whole set.

Linear Independence

If any subset of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, so is the whole set.

Argument: Suppose, say, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \subset\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent.

Linear Independence

If any subset of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, so is the whole set.

Argument: Suppose, say, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \subset\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. This means that there are c_{1}, c_{2}, c_{3} not all 0 so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

But then,

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+0 \vec{v}_{4}+\ldots+0 \vec{v}_{n}=\overrightarrow{0}
$$

so the whole set is linearly dependent.

Linear Independence

If any subset of $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent, so is the whole set.

Argument: Suppose, say, $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\} \subset\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. This means that there are c_{1}, c_{2}, c_{3} not all 0 so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}=\overrightarrow{0}
$$

But then,

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+0 \vec{v}_{4}+\ldots+0 \vec{v}_{n}=\overrightarrow{0}
$$

so the whole set is linearly dependent.
Equivalently: if $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly independent then so is every subset of vectors from $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$.

Determining Independence

How to check whether a set of vectors $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is linearly dependent:

Determining Independence

How to check whether a set of vectors $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is linearly dependent: It's equivalent to saying there is non-zero solution to

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\overrightarrow{0} .
$$

Determining Independence

How to check whether a set of vectors $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is linearly dependent: It's equivalent to saying there is non-zero solution to

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\overrightarrow{0}
$$

But this is a homogeneous system of linear equations - we can answer that question!

Determining Independence

How to check whether a set of vectors $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is linearly dependent: It's equivalent to saying there is non-zero solution to

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\overrightarrow{0}
$$

But this is a homogeneous system of linear equations - we can answer that question!

Construct associated matrix of column vectors:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Reduce to echelon form and see if there are any free variables.

Determining Independence

How to check whether a set of vectors $\left\{\vec{a}_{1}, \ldots, \vec{a}_{n}\right\}$ is linearly dependent: It's equivalent to saying there is non-zero solution to

$$
x_{1} \vec{a}_{1}+\cdots+x_{n} \vec{a}_{n}=\overrightarrow{0}
$$

But this is a homogeneous system of linear equations - we can answer that question!

Construct associated matrix of column vectors:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

Reduce to echelon form and see if there are any free variables. There are no free variables if and only if linearly independent

Determining Independence

Example 4: Any set of more than m vectors in \mathbb{R}^{m} is linearly dependent.

Determining Independence

Example 4: Any set of more than m vectors in \mathbb{R}^{m} is linearly dependent.
For if $n>m$ then the associated matrix of column vectors

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is longer than it is high.

Determining Independence

Example 4: Any set of more than m vectors in \mathbb{R}^{m} is linearly dependent.
For if $n>m$ then the associated matrix of column vectors

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is longer than it is high.
When reduced to echelon form, there must be free variables:

$$
\left[\begin{array}{llllll}
\$ & * & * & * & * & * \\
0 & \$ & * & * & * & * \\
0 & 0 & 0 & \$ & * & * \\
0 & 0 & 0 & 0 & \$ & * \\
0 & 0 & 0 & 0 & 0 & \$
\end{array}\right]
$$

Determining Independence

Example 4: Any set of more than m vectors in \mathbb{R}^{m} is linearly dependent.
For if $n>m$ then the associated matrix of column vectors

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

is longer than it is high.
When reduced to echelon form, there must be free variables:

$$
\left[\begin{array}{llllll}
\$ & * & * & * & * & * \\
0 & \$ & * & * & * & * \\
0 & 0 & 0 & \$ & * & * \\
0 & 0 & 0 & 0 & \$ & * \\
0 & 0 & 0 & 0 & 0 & \$
\end{array}\right]
$$

Here $6>5$ and x_{3} is the free variable.

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]\right\}
$$

A) Dependent since they are 2 vectors in \mathbb{R}^{3} and $2<3$.
B) Independent since they are 2 vectors in \mathbb{R}^{3} and $2<3$.
C) Dependent because one is a multiple of the other.
D) Independent because neither is a multiple of the other.
E) Independent because one is a multiple of the other.

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right],\left[\begin{array}{l}
3 \\
4 \\
5
\end{array}\right]\right\}
$$

A) Dependent since they are 2 vectors in \mathbb{R}^{3} and $2<3$.
B) Independent since they are 2 vectors in \mathbb{R}^{3} and $2<3$.
C) Dependent because one is a multiple of the other.
D) Independent because neither is a multiple of the other.
E) Independent because one is a multiple of the other.

Answer: It's a pair of vectors and neither is a multiple of the other. Hence linearly independent.

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
-13
\end{array}\right]\right\}
$$

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
-13
\end{array}\right]\right\}
$$

A) Independent since they are 3 vectors in \mathbb{R}^{3}.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.
D) Independent because a subset is independent.

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
-13
\end{array}\right]\right\}
$$

A) Independent since they are 3 vectors in \mathbb{R}^{3}.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.
D) Independent because a subset is independent.

Answer: The second is a multiple of the first, so that pair alone is linearly dependent.

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
-13
\end{array}\right]\right\}
$$

A) Independent since they are 3 vectors in \mathbb{R}^{3}.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.
D) Independent because a subset is independent.

Answer: The second is a multiple of the first, so that pair alone is linearly dependent. Since this subset is linearly dependent, so is the entire set.

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
2 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
4 \\
10
\end{array}\right],\left[\begin{array}{c}
-3 \\
-5 \\
-13
\end{array}\right]\right\}
$$

A) Independent since they are 3 vectors in \mathbb{R}^{3}.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.
D) Independent because a subset is independent.

[^0]
Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]\right\}
$$

Question

Question: Is this set of vectors linearly dependent, or linearly independent?

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]\right\}
$$

A) Independent since they are 3 vectors in \mathbb{R}^{3}.
B) Dependent because one is a multiple of the other.
C) Dependent because a subset is dependent.
D) Independent because a subset is independent.
E) I can't tell.

Answer: For this triple of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]\right\}
$$

we want to determine whether the homogeneous system of linear equations:

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0}
$$

has a non-trivial solution.

Answer: For this triple of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]\right\}
$$

we want to determine whether the homogeneous system of linear equations:

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0}
$$

has a non-trivial solution.
Consider the associated column matrix (no need to augment):

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right]
$$

Answer: For this triple of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]\right\}
$$

we want to determine whether the homogeneous system of linear equations:

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0}
$$

has a non-trivial solution.
Consider the associated column matrix (no need to augment):

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 2 & 5 \\
0 & 2 & 5
\end{array}\right]
$$

Answer: For this triple of vectors

$$
\left\{\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right],\left[\begin{array}{l}
4 \\
9 \\
5
\end{array}\right]\right\}
$$

we want to determine whether the homogeneous system of linear equations:

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\overrightarrow{0}
$$

has a non-trivial solution.
Consider the associated column matrix (no need to augment):

$$
\left[\begin{array}{lll}
1 & 1 & 4 \\
1 & 3 & 9 \\
0 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 2 & 5 \\
0 & 2 & 5
\end{array}\right] \rightarrow\left[\begin{array}{lll}
1 & 1 & 4 \\
0 & 2 & 5 \\
0 & 0 & 0
\end{array}\right]
$$

Since there is a free variable (namely x_{3}) there are non-trivial solutions, so linearly dependent.

Connection with Span

Theorem
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
For example, suppose $\vec{v}_{1} \in \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$.

Connection with Span

Theorem
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
For example, suppose $\vec{v}_{1} \in \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$. That means there are $c_{2}, c_{3}, \ldots, c_{k}$ so that

$$
\vec{v}_{1}=c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}
$$

Connection with Span

Theorem
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
For example, suppose $\vec{v}_{1} \in \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$. That means there are $c_{2}, c_{3}, \ldots, c_{k}$ so that

$$
\vec{v}_{1}=c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}
$$

But this vector equation can be rewritten

$$
-1 \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0} .
$$

Connection with Span

Theorem
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
For example, suppose $\vec{v}_{1} \in \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$. That means there are $c_{2}, c_{3}, \ldots, c_{k}$ so that

$$
\vec{v}_{1}=c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}
$$

But this vector equation can be rewritten

$$
-1 \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

Since at least one of the coefficients (namely -1) is not zero, this shows the set of vectors is linearly dependent.

Connection with Span

Theorem
A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
Here's the argument in the other direction: Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent.

Connection with Span

Theorem

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
Here's the argument in the other direction: Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. That means there are $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

Connection with Span

Theorem

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
Here's the argument in the other direction: Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. That means there are $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

For concreteness, say $c_{1} \neq 0$.

Connection with Span

Theorem

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
Here's the argument in the other direction: Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. That means there are $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

For concreteness, say $c_{1} \neq 0$. Divide by c_{1} to get

$$
\vec{v}_{1}+\frac{c_{2}}{c_{1}} \vec{v}_{2}+\frac{c_{3}}{c_{1}} \vec{v}_{3}+\ldots+\frac{c_{k}}{c_{1}} \vec{v}_{k}=\overrightarrow{0}
$$

Connection with Span

Theorem

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
Here's the argument in the other direction: Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. That means there are $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

For concreteness, say $c_{1} \neq 0$. Divide by c_{1} to get

$$
\vec{v}_{1}+\frac{c_{2}}{c_{1}} \vec{v}_{2}+\frac{c_{3}}{c_{1}} \vec{v}_{3}+\ldots+\frac{c_{k}}{c_{1}} \vec{v}_{k}=\overrightarrow{0}
$$

and this can be rewritten

$$
\vec{v}_{1}=-\frac{c_{2}}{c_{1}} \vec{v}_{2}-\frac{c_{3}}{c_{1}} \vec{v}_{3}-\ldots-\frac{c_{k}}{c_{1}} \vec{v}_{k}
$$

Connection with Span

Theorem

A set of vectors $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ in \mathbb{R}^{m} is linearly dependent if and only if at least one of the vectors is in the span of all the others.
Here's the argument in the other direction: Suppose $\left\{\vec{v}_{1}, \ldots, \vec{v}_{k}\right\}$ is linearly dependent. That means there are $c_{1}, c_{2}, \ldots, c_{k}$, not all zero, so that

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+c_{3} \vec{v}_{3}+\ldots+c_{k} \vec{v}_{k}=\overrightarrow{0}
$$

For concreteness, say $c_{1} \neq 0$. Divide by c_{1} to get

$$
\vec{v}_{1}+\frac{c_{2}}{c_{1}} \vec{v}_{2}+\frac{c_{3}}{c_{1}} \vec{v}_{3}+\ldots+\frac{c_{k}}{c_{1}} \vec{v}_{k}=\overrightarrow{0}
$$

and this can be rewritten

$$
\vec{v}_{1}=-\frac{c_{2}}{c_{1}} \vec{v}_{2}-\frac{c_{3}}{c_{1}} \vec{v}_{3}-\ldots-\frac{c_{k}}{c_{1}} \vec{v}_{k}
$$

Hence $\vec{v}_{1} \in \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}, \ldots, \vec{v}_{k}\right\}$.

Connection with Span

In pictures:

$\vec{v}_{1} \in \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ and $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ linearly dependent.

Connection with Span

$\vec{v}_{1} \notin \operatorname{Span}\left\{\vec{v}_{2}, \vec{v}_{3}\right\}$ and $\left\{\vec{v}_{1}, \vec{v}_{2}, \vec{v}_{3}\right\}$ linearly independent.

[^0]: Answer: The second is a multiple of the first, so that pair alone is linearly dependent. Since this subset is linearly dependent, so is the entire set. Both B) and C) are used to show linear dependence.

