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Some of the figures in this presentation are taken from ”An Introduction to Statistical Learning, with applications in R”
(Springer, 2013) with permission from the authors: G. James, D. Wi�en, T. Hastie and R. Tibshirani



Learning Methods

1. Supervised Learning: Learning a function f :

Y = f(X) + ε

1.1 Regression
1.2 Classification

2. Unsupervised learning: Discover interesting properties of
data (no labels)

X1, X2, . . .

2.1 Dimensionality reduction or embedding
2.2 Clustering



Principal Components Analysis

I Reduce dimensionality
I Start with features X1 . . . Xn

I Construct fewer features Z1 . . . ZM

Z1 = φ11X1 + φ21X2 + . . .+ φp1Xp

I Weights are usually normalized (using `2 norm)

p∑
j=1

φ2j1 = 1

I Data has greatest variance along Z1



1st Principal Component
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I 1st Principal Component: Direction with the largest variance

Z1 = 0.839× (pop− pop) + 0.544× (ad− ad)



More Unsupervised Learning: Discovering Structure of
Data

1. K-Means Clustering

2. Hierarchical Clustering

3. Expectation-Maximization Method (Not Covered in ISL, see
ESL 8.5)



Clustering

Simplify data in a di�erent way than PCA.

I PCA finds a low-dimensional representation of data

I Clustering finds homogeneous subgroups among the
observations



Clustering: Assumptions and Goals

I Exists a method for measuring similarity between data points
I Some points are more similar than others

I Want to identify similarity pa�erns
1. Discover the di�erent types of disease
2. Market segmentation: Types of users that visit a website
3. Discover movie or book genres
4. Discover types of topics in documents

I Discover latent pa�erns that exist but may not be
observed/observable
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Clustering Algorithms

I K-Means: simple and e�ective
I Hierarchical clustering: Many complex clusters
I Many other clustering methods, most heuristics
I EM: General algorithm for dealing with latent variables by

maximizing likelihood



K-Means Clustering

I Cluster data into complete and non-overlapping sets
I Example:

K=2 K=3 K=4



K-Means Objective

I k-th cluster: Ck
I i-th observation in cluster k: i ∈ Ck

I Find clusters that are homogeneous: W (Ck) homogeneity of
clusters

min
C1,...,CK

K∑
k=1

W (Ck)

I Define homogeneity as in-cluster variance

min
C1,...,CK

K∑
k=1

 1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2


I This is an NP hard problem
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K-Means Algorithm
Heuristic solution to the minimization problem

1. Randomly assign cluster numbers to observations
2. Iterate while clusters change

2.1 For each cluster, compute the centroid
2.2 Assign each observation to the closest cluster

Note that:

1

|Ck|
∑

i,i′∈Ck

p∑
j=1

(xij − xi′j)2 = 2
∑

i,i′∈Ck

p∑
j=1

(xij − x̄kj)2



K-Means Illustration

Data Step 1 Iteration 1, Step 2a

Iteration 1, Step 2b Iteration 2, Step 2a Final Results



Properties of K-Means

I Local minimum: Does not necessarily find the optimal solution
I Multiple runs can result in di�erent solutions
I Choose the result of the run with minimal objective
I Cluster labels do not ma�er



Multiple Runs of K-Means

320.9 235.8 235.8

235.8 235.8 310.9



Hierarchical Clustering

I Multiple levels of similarity needed in complex domains
I Build a similarity tree
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Dendrogram: Similarity Tree
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Hierarchical Clustering Algorithm

1. Begin with n observations and compute
(
n
2

)
dissimilarity

measures
2. For i = n, n− 1, . . . , 2

2.1 Fuse 2 most similar clusters
2.2 Update i− 1 dissimilarities



Hierarchical Clustering Algorithm: Illustration
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Dissimilarity Measure: Linkage

1. Complete

2. Single

3. Average

4. Centroid



Impact of Dissimilarity Measure

Average Linkage Complete Linkage Single Linkage



Clustering in Practice

I Fraught with problems: no clear measure of quality (like MSE)
I How to choose k? Problem dependent
I Standardize features, center them?
I What dissimilarity to use?

I Careful over-explaining clustering results: source:
http://miriamposner.com

http://miriamposner.com
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Expectation-Maximization

I Maximum likelihood approach to clustering
I General method for dealing with latent features / labels
I Especially useful with generative models
I A heuristic method used to solve complex optimization

problems
I Generalization of the idea: Minorization-Maximization
I Gentle introduction: https://www.cs.utah.edu/
∼piyush/teaching/EM algorithm.pdf

https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf
https://www.cs.utah.edu/~piyush/teaching/EM_algorithm.pdf


Recall LDA



LDA: Linear Discriminant Analysis

I Generative model: capture probability of predictors for each
label
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I Predict:

1. Pr[balance | default = yes] and Pr[default = yes]
2. Pr[balance | default = no] and Pr[default = no]

I Classes are normal: Pr[balance | default = yes]
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LDA vs Logistic Regression

I Logistic regressions:

Pr[default = yes | balance]

I Linear discriminant analysis:

Pr[balance | default = yes] and Pr[default = yes]

Pr[balance | default = no] and Pr[default = no]



LDA with 1 Feature

I Classes are normal and class probabilities πk are scalars

fk(x) =
1

σ
√

2π
exp

(
− 1

2σ2
(x− µk)2

)
I Key Assumption:Class variances σ2k are the same.
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EM For LDA

I Labels are missing, guess them
I Find the most likely model and latent observations:

max
model

log `(model) = max
model
latent

log
∑
latent

Pr[data, latent | model] =

= max
model
latent

log
∑
latent

Pr[data | latent,model] Pr[latent | model]

I Di�icult and non-convex optimization problem (log
∑

)
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EM Derivation

I Iteratively approximate and optimize the log-likelihood
function
1. Construct a concave lower bound
2. Maximize the lower bound
3. Repeat

I Notation:
I Model: θ
I Data: x
I Latent variables: z

max
θ,z

log `(θ, z) = max
θ,z

log Pr[x | θ] =

= max
θ,z

log
∑
z

Pr[x | z, θ] Pr[z | θ]



EM Derivation

I Suppose we have an estimate of the model θn
I How to compute θn+1 that improves on it?

θn+1, zn+1 =

arg max
θ,z

log
∑
z

Pr[x, z | θ] = arg max
θ,z

log
∑
z

Pr[z | θ] Pr[z | x, θ] =

= arg max
θ,z

log
∑
z

Pr[z | θ] Pr[z | x, θ]Pr[z | x, θn]

Pr[z | x, θn]
=

= arg max
θ,z

log
∑
z

Pr[z | x, θn]
Pr[z | θ] Pr[z | x, θ]

Pr[z | x, θn]
≤

jensen’s
≤ arg max

θ,z

∑
z

Pr[z | x, θn] log
Pr[z | θ] Pr[z | x, θ]

Pr[z | x, θn]
=

= arg max
θ,z

∑
z

Pr[z | x, θn] log Pr[x, z | θ]



EM Algorithm

1. E Step: Estimate Pr[z | x, θn] for all values of z. (Construct the
lower bound)

2. M-Step: Maximize the lower bound:

θn+1 = arg max
θ

∑
z

Pr[z | x, θn] log Pr[x, z | θ]

This can be solved using traditional MLE methods with
weighted samples



EM for Mixture of Gaussians
Rough sketch

1. Randomly assign cluster weights to observations
2. Iterate while clusters change

2.1 For each cluster, compute the centroid based on observation
weights of observations

2.2 Assign each observation new cluster weights based on the
distances from centroids



Other Applications of EM

I Very powerful and general idea!
I Training with missing data for many model types
I Hidden variables in Bayesian nets
I Identifying confounding variables
I Solving di�icult (complex) optimization problem: MM


