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Learning Methods

1. Supervised Learning: Learning a function f:

Y=f(X)+e

1.1 Regression
1.2 Classification
2. Unsupervised learning: Discover interesting properties of
data (no labels)
X1, Xo,...

2.1 Dimensionality reduction or embedding
2.2 Clustering



Principal Components Analysis

v

Reduce dimensionality
Start with features X7 ... X,

v

v

Construct fewer features Z ... Zyy

Z1 =11 X1+ 90 Xo+ ...+ 91 X,

v

Weights are usually normalized (using ¢2 norm)

p
> h=1
j=1

Data has greatest variance along Z;

v



1st Principal Component
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> 1st Principal Component: Direction with the largest variance

Z1 = 0.839 x (pop — pop) + 0.544 x (ad — ad)



1st Principal Component
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> 1st Principal Component: Direction with the largest variance
Z1 = 0.839 x (pop — pop) + 0.544 x (ad — ad)

» Is this linear?



1st Principal Component
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> 1st Principal Component: Direction with the largest variance
Z1 = 0.839 x (pop — pop) + 0.544 x (ad — ad)

> Is this linear? Yes, after mean centering.



1st Principal Component
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minimize distances to all points



1st Principal Component
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Is this the same as linear regression?



1st Principal Component
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green line: st principal component, minimize distances to all points

Is this the same as linear regression? No, like total least squares.



2nd Principal Component
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> 2nd Principal Component: Orthogonal to 1st component,
largest variance

Zy = 0.544 x (pop — pop) — 0.839 x (ad — ad)



1st Principal Component
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Solving PCA

2
p

1
¢1I’1.f.1.i,1;1)p1 EZ Z%‘wzj

n
i=1 \j=1

P
subject to Z gb?l =1
j=1

Solve using eigenvalue decomposition



Interpretation of 1st Principal Component

1. Direction with the largest variance
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PCA Example
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PCA Technicalities

1. Features should be centered = zero mean

2. Scale of features matters

3. The direction (sign) of principal vectors is not unique

4. Proportion of Variance Explained: variance along the
dimension / total variance

5. How many principal vectors?



PCA Technicalities

1. Features should be centered = zero mean

2. Scale of features matters

3. The direction (sign) of principal vectors is not unique

4. Proportion of Variance Explained: variance along the
dimension / total variance

5. How many principal vectors? It depends ...



Partial Least Squares

> Supervised version of PCR
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Problem With High Dimensions

» Computational complexity

» Overfitting is a problem
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Overfitting with Many Variables
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Examples

1. Simple PCA: R notebook

2. MNIST PCA: https://colah.github.io/posts/
2014-10-Visualizing-MNIST/
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