Logistic Regression and Maximum Likelihood

Marek Petrik

Feb 09 2017

So Far in ML

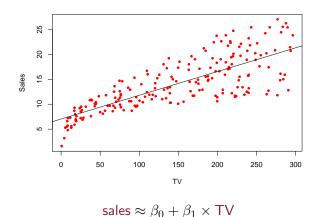
- Regression vs Classification
- Linear regression
- ► Bias-variance decomposition
- Practical methods for linear regression

Simple Linear Regression

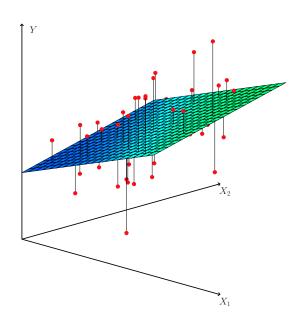
▶ We have only one feature

$$Y \approx \beta_0 + \beta_1 X$$
 $Y = \beta_0 + \beta_1 X + \epsilon$

Example:

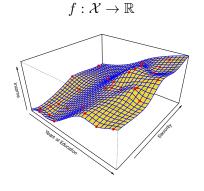


Multiple Linear Regression



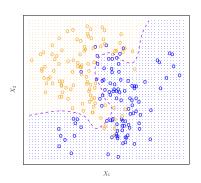
Types of Function f

Regression: continuous target



Classification: discrete target

$$f: \mathcal{X} \to \{1, 2, 3, \dots, k\}$$



Today

- Why not use linear regression for classification
- Logistic regression
- Maximum likelihood principle
- Maximum likelihood for linear regression
- Reading:
 - ► ISL 4.1-3
 - ESL 2.6 (max likelihood)

Examples of Classification

1. A person arrives at the emergency room with a set of symptoms that could possibly be attributed to one of three medical conditions. Which of the three conditions does the individual have?

Examples of Classification

An online banking service must be able to determine whether or not a transaction being performed on the site is fraudulent, on the basis of the userffs IP address, past transaction history, and so forth.

Examples of Classification

3. On the basis of DNA sequence data for a number of patients with and without a given disease, a biologist would like to figure out which DNA mutations are deleterious (disease-causing) and which are not.

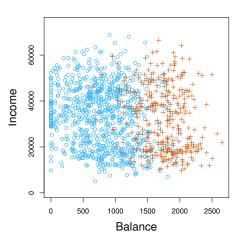
IBM Watson

https://en.wikipedia.org/w/index.php?curid=31142331

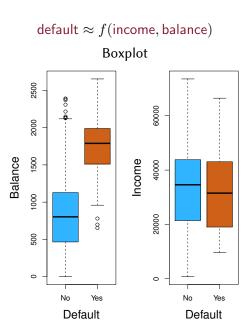
Logistic regression + clever function engineering

Predicting Default

 $\mathsf{default} \approx f(\mathsf{income}, \mathsf{balance})$



Predicting Default



Casting Classification as Regression

- ▶ Regression: $f: X \to \mathbb{R}$
- ▶ Classification: $f: X \rightarrow \{1, 2, 3\}$

Casting Classification as Regression

- ▶ Regression: $f: X \to \mathbb{R}$
- ▶ Classification: $f: X \rightarrow \{1, 2, 3\}$

- ▶ But $\{1,2,3\} \subseteq \mathbb{R}$
- ▶ Do we even need classification?

Casting Classification as Regression

- ▶ Regression: $f: X \to \mathbb{R}$
- ▶ Classification: $f: X \rightarrow \{1, 2, 3\}$

- ▶ But $\{1,2,3\} \subseteq \mathbb{R}$
- Do we even need classification?

- Yes!
- Regression: Values that are close are similar
- ► Classification: Distance of classes is meaningless

Casting Classification as Regression: Example

Predict possible diagnosis:

Assign class labels:

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if overdose} \end{cases}.$$
 3 if seizure

Fit linear regression

Casting Classification as Regression: Example

Predict possible diagnosis:

Assign class labels:

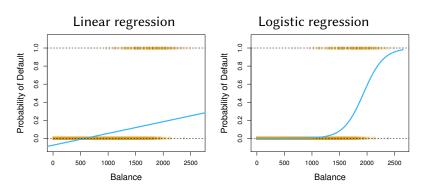
$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if overdose} \end{cases}.$$

$$3 & \text{if seizure}$$

- Fit linear regression
- ► Make predictions: If uncertain whether symptoms point to stroke or seizure, we predict overdose

Linear Regression for 2-class Classification

$$Y = \begin{cases} 1 & \text{if default} \\ 0 & \text{otherwise} \end{cases}$$



$$\mathbb{P}[\mathsf{default} = \mathsf{yes} \mid \mathsf{balance}]$$

Logistic Regression

- Predict **probability** of a class: p(X)
- Example: p(balance) probability of default for person with balance
- Linear regression:

$$p(X) = \beta_0 + \beta_1$$

logistic regression:

$$p(X) = \frac{e^{\beta_0 + \beta_1 X}}{1 + e^{\beta_0 + \beta_1 X}}$$

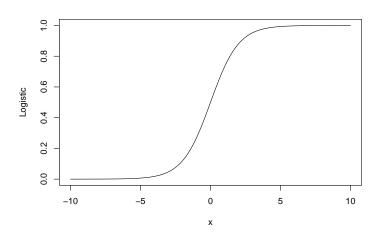
the same as:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X$$

• Odds: p(X)/1-p(X)

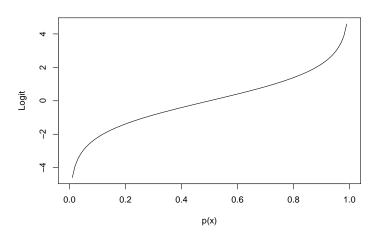
Logistic Function

$$y = \frac{e^x}{1 + e^x}$$



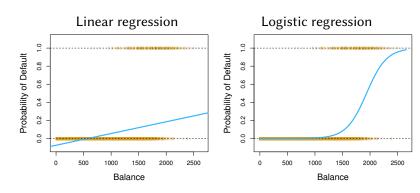
Logistic Function

$$\log\left(\frac{p(X)}{1 - p(X)}\right)$$



Logistic Regression

$$\mathbb{P}[\mathsf{default} = \mathsf{yes} \mid \mathsf{balance}] = \frac{e^{\beta_0 + \beta_1 \mathsf{balance}}}{1 + e^{\beta_0 + \beta_1 \mathsf{balance}}}$$



Estimating Coefficients: Maximum Likelihood

▶ **Likelihood**: Probability that data is generated from a model

$$\ell(\text{model}) = \mathbb{P}[\text{data} \mid \text{model}]$$

Find the most likely model:

$$\max_{\substack{\text{model}\\\text{model}}} \ell(\underset{\substack{\text{model}\\\text{model}}}{\text{model}}) = \max_{\substack{\text{model}}} \mathbb{P}[\underline{\text{data}} \mid \underset{\substack{\text{model}\\\text{model}}}{\text{model}}]$$

- Likelihood function is difficult to maximize
- ► Transform it using log (strictly increasing)

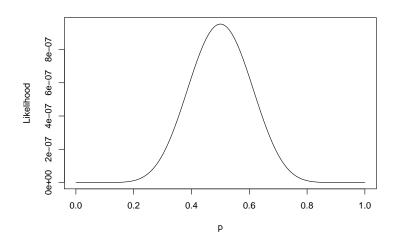
$$\max_{\substack{\text{model}}} \log \ell(\underline{\text{model}})$$

Strictly increasing transformation does not change maximum

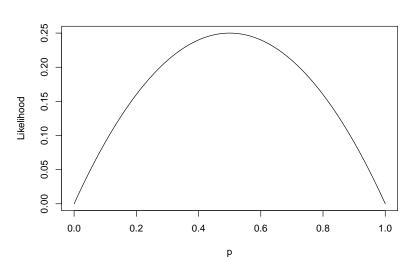
Example: Maximum Likelihood

- Assume a coin with p as the probability of heads
- ▶ **Data**: *h* heads, *t* tails
- The likelihood function is:

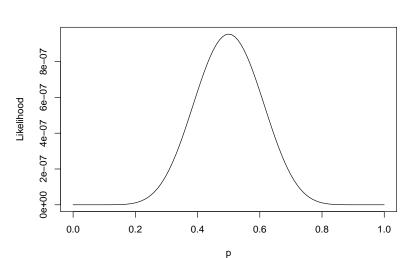
$$\ell(p) = p^h (1 - p)^t.$$



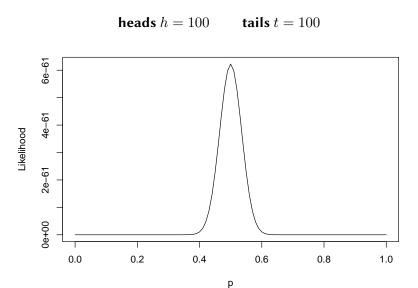
Likelihood Function: 2 coin flips



Likelihood Function: 20 coin flips



Likelihood Function: 200 coin flips



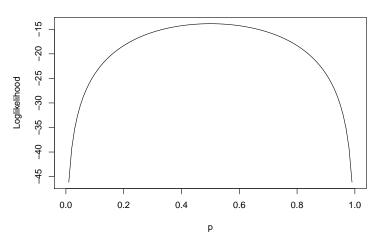
Maximizing Likelihood

Likelihood function is not concave: hard to maximize

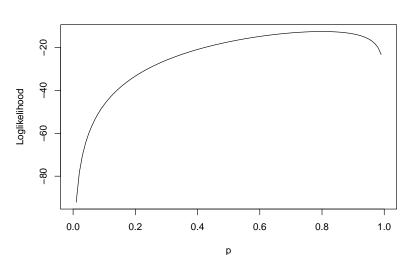
$$\ell(p) = p^h (1 - p)^t.$$

Maximize the log-likelihood instead

$$\log \ell(p) = h \log(p) + t \log(1 - p).$$



Log-likelihood: Biased Coin



Maximize Log-likelihood

► Log-likelihood:

$$\log \ell(p) = h \log(p) + t \log(1 - p).$$

Maximize Log-likelihood

▶ Log-likelihood:

$$\log \ell(p) = h \log(p) + t \log(1 - p).$$

- Maximum where derivative = 0
- Derivative:

$$\frac{d}{dp}h\log(p) + t\log(1-p) = \frac{h}{p} - \frac{t}{1-p}$$

Maximize Log-likelihood

Log-likelihood:

$$\log \ell(p) = h \log(p) + t \log(1 - p).$$

- Maximum where derivative = 0
- ▶ Derivative:

$$\frac{d}{dp}h\log(p) + t\log(1-p) = \frac{h}{p} - \frac{t}{1-p}$$

Maximum likelihood solution:

$$p = \frac{h}{h+1}$$

Max-likelihood: Logistic Regression

- Features x_i and labels y_i
- Likelihood:

$$\ell(\beta_0, \beta_1) = \prod_{i:y_i=1} p(x_i) \prod_{i:y_i=0} (1 - p(x_i))$$

Log-likelihood:

$$\ell(\beta_0, \beta_1) = \sum_{i:y_i=1} \log p(x_i) + \sum_{i:y_i=0} \log(1 - p(x_i))$$

- Concave maximization problem
- ► Can be solved using gradient descent

Multiple Logistic Regression

Multiple features

$$p(X) = \frac{e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_n}}{1 + e^{\beta_0 + \beta_1 X_1 + \beta_2 X_2 + \dots + \beta_m X_n}}$$

Equivalent to:

$$\log\left(\frac{p(X)}{1-p(X)}\right) = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \ldots + \beta_m X_n$$

Multinomial Logistic Regression

- Predicting multiple classes:
 - Medical diagnosis

$$Y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if overdose} \\ 3 & \text{if seizure} \end{cases}$$

- Predicting which products customer purchases
- Straightforward generalization of simple logistic regression

$$\frac{e^{c_1}}{1 + e^{c_1}} \quad \Rightarrow \quad \frac{e^{c_1}}{e^{c_1} + e^{c_2} + \dots + e^{c_k}}$$