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So Far in ML

v

Regression vs Classification

v

Linear regression

v

Bias-variance decomposition

v

Practical methods for linear regression



Simple Linear Regression
» We have only one feature
Y~pfo+HhX Y=0+HhX+e

» Example:
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Multiple Linear Regression




Types of Function f

. _ Classification: discrete target
Regression: continuous target

fiX R fix —{1,2,3,...,k}

oo

Xy




Today

v

Why not use linear regression for classification

> Logistic regression

» Maximum likelihood principle

» Maximum likelihood for linear regression
> Reading:

> ISL 4.1-3
» ESL 2.6 (max likelihood)



Examples of Classification

1. A person arrives at the emergency room with a set of
symptoms that could possibly be attributed to one of three

medical conditions. Which of the three conditions does the
individual have?



Examples of Classification

2. An online banking service must be able to determine whether
or not a transaction being performed on the site is fraudulent,
on the basis of the userffs IP address, past transaction history,
and so forth.



Examples of Classification

3. On the basis of DNA sequence data for a number of patients
with and without a given disease, a biologist would like to
figure out which DNA mutations are deleterious
(disease-causing) and which are not.



IBM Watson

https://en.wikipedia.org/w/index.php?curid=31142331

Logistic regression + clever function engineering



Predicting Default

default ~ f(income, balance)
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Predicting Default

default &~ f(income, balance)
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Casting Classification as Regression

> Regression: f: X - R
» Classification: f : X — {1,2,3}



Casting Classification as Regression

v

Regression: f : X — R
Classification: f : X — {1,2,3}

v

v

But {1,2,3} CR

» Do we even need classification?



Casting Classification as Regression

> Regression: f: X - R
» Classification: f : X — {1,2,3}

» But {1,2,3} CR

» Do we even need classification?

> Yes!
> Regression: Values that are close are similar

» Classification: Distance of classes is meaningless



Casting Classification as Regression: Example

> Predict possible diagnosis:
{stroke, overdose, seizure}
> Assign class labels:

1 if stroke
Y =<2 ifoverdose .

3  if seizure

> Fit linear regression



Casting Classification as Regression: Example

v

Predict possible diagnosis:

{stroke, overdose, seizure}

v

Assign class labels:

1 if stroke
Y =<2 ifoverdose .

3  if seizure

v

Fit linear regression

v

Make predictions: If uncertain whether symptoms point to
stroke or seizure, we predict overdose



Linear Regression for 2-class Classification

Probability of Default
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Logistic Regression

» Predict probability of a class: p(X)

» Example: p(balance) probability of default for person with
balance

> Linear regression:

p(X) = Bo+ b1
> logistic regression:

6180+61X
p(X) = 1+ ePotbr X

» the same as:

o (2205) < s

» Odds: P(X)/1-p(X)



Logistic Function
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Logistic Function
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Logistic Regression

eﬁg—f—,@ﬁbalance

P[default = yes | balance] = 1+ cPotBibalance
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Estimating Coefficients: Maximum Likelihood

v

Likelihood: Probability that data is generated from a model

¢(model) = P[data | model]

v

Find the most likely model:

max ¢(model) = max P[data | model]
model model

Likelihood function is difficult to maximize

v

v

Transform it using log (strictly increasing)

max log ¢(model)
model

v

Strictly increasing transformation does not change maximum



Example: Maximum Likelihood

> Assume a coin with p as the probability of heads
» Data: h heads, t tails
> The likelihood function is:

Likelihood
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Likelihood Function: 2 coin flips

heads h =1

tailst =1
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Likelihood Function: 20 coin flips

heads h = 10 tails t = 10

Likelihood
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Likelihood Function: 200 coin flips

heads h = 100 tails t = 100
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Maximizing Likelihood
» Likelihood function is not concave: hard to maximize
(p)=p"(1-p).
> Maximize the log-likelihood instead

log £(p) = h log(p) +t log(1 — p) .

Loglikelihood
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Log-likelihood: Biased Coin

heads h = 20 tails t = 50
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Maximize Log-likelihood

> Log-likelihood:

log £(p) = h log(p) +t log(1 —p) .



Maximize Log-likelihood
> Log-likelihood:
log £(p) = h log(p) +t log(1 —p) .

» Maximum where derivative = 0

» Derivative:

d h
—h log(p) +tlog(l —p) = — — ——
b 1og(p) + ¢ log(1 —p) = -



Maximize Log-likelihood
> Log-likelihood:
log £(p) = h log(p) +t log(1 —p) .

» Maximum where derivative = 0

» Derivative:

d h
—h log(p) +tlog(l —p) = — — ——
b 1og(p) + ¢ log(1 —p) = -

» Maximum likelihood solution:

P=



Max-likelihood: Logistic Regression

> Features z; and labels y;
> Likelihood:
£(Bo, B1) = H p(zi) H (1 —p(z:))
iy, =1 2:y; =0
> Log-likelihood:
((Bo Br) = Y _ logp(as) Z log(1 — p(:))
iy =1 Ly=
» Concave maximization problem

v

Can be solved using gradient descent



Multiple Logistic Regression

> Multiple features

ePo+B1X1+P2 Xo+...+fm Xn
pX) = 1+ eBotBrXi+B2Xo+..+BmXn

» Equivalent to:

log (%) = Bo + 1 X1+ B2 Xo+ ...+ B Xy



Multinomial Logistic Regression

» Predicting multiple classes:

» Medical diagnosis

1 if stroke
Y =<2 ifoverdose .

3 if seizure

» Predicting which products customer purchases

> Straightforward generalization of simple logistic regression

C1 C1

e
=
1+ea el 4 ef2 + ... + etk

e




