

Risk-Averse Decision Making and Control

Marek Petrik
University of New Hampshire

Mohammad Ghavamzadeh *Adobe Research*

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary

Schedule

9:00-9:20	Introduction to risk-averse modeling			
9:20-9:40	Value at Risk and Average Value at Risk			
9:40-9:50	Break			
9:50-10:30	Coherent Measures of Risk: Properties and method			
10:30-11:00	Coffee break			
11:00-12:30	Risk-averse reinforcement learning			
12:30-12:40	Break			
12:40–12:55	Time consistent measures of risk			

Risk Aversion

Risk (Wikipedia):

Risk is the potential of gaining or losing something of value. . . . **Uncertainty** is a potential, unpredictable, and uncontrollable outcome; **risk** is a consequence of action taken in spite of uncertainty.

Risk aversion (Wikipedia):

... **risk aversion** is the behavior of humans, when exposed to uncertainty, to attempt to reduce that uncertainty. ...

Tutorial: Modern methods for risk-averse decision making

Desire for Risk Aversion

- Empirical evidence:
 - 1. People buy insurance
 - 2. Diversifying financial portfolios
 - 3. Experimental results

- Other reasons:
 - Reduce contingency planning

Where Risk Aversion Matters

- Financial portfolios
- Heath-care decisions

- Agriculture
- ▶ Public infrastructure

Self-driving cars?

When Risks Are Ignored ...

Seawalls overflow in a tsunami

Housing bubble leads to a financial collapse

Need to Quantify Risk

▶ Mitigating risk is expensive, how much is it worth?

Need to Quantify Risk

- Mitigating risk is expensive, how much is it worth?
- Expected utility theory:

$$\mathbb{E}[u(X)] = \mathbb{E}[\mathrm{utility}(X)]$$

Need to Quantify Risk

- Mitigating risk is expensive, how much is it worth?
- Expected utility theory:

$$\mathbb{E}[u(X)] = \mathbb{E}[\text{utility}(X)]$$

Exponential utility function (Bernoulli functions):

$$u(x) = \frac{1 - e^{-ax}}{a}$$

Car value: \$10 000

Insurance options

Option	Deductible	Cost
X_1	\$10 000	\$0
X_2	\$2 000	\$112
X_3	\$100	\$322

Car value: \$10 000

Insurance options

Option	Deductible	Cost
X_1	\$10 000	\$0
X_2	\$2 000	\$112
X_3	\$100	\$322

Expected utility:

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
	•			

Car value: \$10 000

Insurance options

Option	Option Deductible	
X_1	\$10 000	\$0
X_2	\$2 000	\$112
X_3	\$100	\$322

Expected utility:

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
	•			

Car value: \$10 000

Insurance options

Option	Deductible	Cost
X_1	\$10 000	\$0
X_2	\$2 000	\$112
X_3	\$100	\$322

Expected utility:

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422

Car value: \$10 000

Insurance options

	•	
Option	Deductible	Cost
X_1	\$10 000	\$0
X_2	\$2 000	\$112
X_3	\$100	\$322

Expected utility:

Event	\mathbb{P}	X_1	X_2	X_3		
No accident	92%	\$0	-\$112	-\$322		
Minor accident	7.5%	-\$2500	-\$2112	-\$422		
Major accident	0.5%	-\$10000	-\$2112	-\$422		
E		-\$237.50	-\$272.00	-\$330.00		

Risk-neutral choice: no insurance

Risk Averse Utility Functions

Exponential utility function

$$u(x) = \frac{1 - \exp(-10^{-6} \cdot (x + 10^5))}{10^{-6}}$$

- $ightharpoonup X_1$ no insurance
- $ightharpoonup X_2$ high deductible insurance

Event	\mathbb{P}	X_1	$u(X_1)$	X_2	$u(X_2)$
No accident	92%	\$0	1 1111	-\$112	1 1111
Minor accident	7.5%	-\$2500	1 109	-\$2112	1 1 1 1 0
Major accident	0.5%	-\$10 000	0	-\$2112	1 1 1 1 0
\mathbb{E}		-\$237.50	1 105	-\$272.00	1111

Risk Averse Utility Functions

Exponential utility function

$$u(x) = \frac{1 - \exp(-10^{-6} \cdot (x + 10^5))}{10^{-6}}$$

- $ightharpoonup X_1$ no insurance
- $ightharpoonup X_2$ high deductible insurance

Event	\mathbb{P}	X_1	$u(X_1)$	X_2	$u(X_2)$
No accident	92%	\$0	1 1111	-\$112	1 111
Minor accident	7.5%	-\$2500	1 109	-\$2112	1 1 1 1 0
Major accident	0.5%	-\$10 000	0	-\$2112	1110
E		-\$237.50	1 105	-\$272.00	1111

Prefer insurance, but difficult to interpret and elicit

Drawbacks of Expected Utility Theory

(Schoemaker 1980)

- 1. Does not explain human behavior
- 2. Difficult to elicit utilities
- 3. Complicates optimization

(Friedman et al. 2014)

Major Alternatives for Measuring Risk

1. Markowitz portfolios: Penalize dispersion risk

$$\min_{c \ge \mathbf{0}} \quad \operatorname{Var}\left[\sum_{i} c_{i} \cdot X_{i}\right]$$
s.t.
$$\mathbb{E}\left[\sum_{i} c_{i} \cdot X_{i}\right] = \mu, \quad \sum_{i} c_{i} = 1$$

Limited modeling capability and also penalizes upside

Major Alternatives for Measuring Risk

1. Markowitz portfolios: Penalize dispersion risk

$$\min_{c \ge 0} \quad \operatorname{Var}\left[\sum_{i} c_{i} \cdot X_{i}\right]$$
s.t.
$$\mathbb{E}\left[\sum_{i} c_{i} \cdot X_{i}\right] = \mu, \quad \sum_{i} c_{i} = 1$$

Limited modeling capability and also penalizes upside

- 2. Risk measures: (Artzner et al. 1999)
 - Value at risk (V@R)
 - Conditional value at risk (CV@R)
 - Coherent measures of risk

Topic of this tutorial

Alternative to expected utility theory

- Alternative to expected utility theory
- + Flexible modeling framework

- Alternative to expected utility theory
- Flexible modeling framework
- + Convenient to use with optimization and decision making

- Alternative to expected utility theory
- Flexible modeling framework
- + Convenient to use with optimization and decision making
- + Easier to elicit than utilities

- Alternative to expected utility theory
- Flexible modeling framework
- + Convenient to use with optimization and decision making
- + Easier to elicit than utilities
- Difficulties in sequential decision making

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary

Schedule

9:00-9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk: Properties and methods
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Risk Measure

Risk measure: function ρ that maps random variable to a real number

Risk Measure

Risk measure: function ρ that maps random variable to a real number

Expectation is a risk measure

$$\rho(X) = \mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

Risk neutral

Risk Measure

Risk measure: function ρ that maps random variable to a real number

Expectation is a risk measure

$$\rho(X) = \mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

- Risk neutral
- Worst-case is a risk measure

$$\rho(X) = \min[X] = \min_{\omega \in \Omega} X(\omega)$$

Very risk averse

$$\rho(X) = V@R_{\alpha}(X) = \sup \{t : \mathbb{P}[X \le t] < \alpha\}$$

Rewards smaller than $V@R_{\alpha}(X)$ with probability at most α

Example α values:

$$\alpha = 0.5$$
 Median

$$\rho(X) = V@R_{\alpha}(X) = \sup \{t : \mathbb{P}[X \le t] < \alpha\}$$

Rewards smaller than $V@R_{\alpha}(X)$ with probability at most α

Example α values:

 $\alpha = 0.5$ Median

 $\alpha = 0.3$ More conservative

$$\rho(X) = V@R_{\alpha}(X) = \sup \{t : \mathbb{P}[X \le t] < \alpha\}$$

Rewards smaller than $V@R_{\alpha}(X)$ with probability at most α

Example α values:

 $\alpha = 0.5$ Median

 $\alpha = 0.3$ More conservative

 $\alpha = 0.05$ Conservative

$$\rho(X) = V@R_{\alpha}(X) = \sup \{t : \mathbb{P}[X \le t] < \alpha\}$$

Rewards smaller than $V@R_{\alpha}(X)$ with probability at most α

Example α values:

 $\alpha = 0.5$ Median

 $\alpha = 0.3$ More conservative

 $\alpha = 0.05$ Conservative

 $\alpha = 0$ Worst case

V@R Example 1: Cumulative Distribution Function

$$V@R_{0.05}(X) = -1.7$$

V@R Example 2: Cumulative Distribution Function

$$V@R_{0.3}(X) = -0.5$$

Car Insurance And V@R: 25%

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor accident	7.5%	-\$2500
Major accident	0.5%	-\$10000

$$V@R_{\alpha}(X) = \sup \{t : \mathbb{P}[X \le t] < \alpha\} \qquad \alpha = 0.25$$

t	$\mathbb{P}[X \le t]$	α
-\$2600	0.005	0.25
-\$2500	0.008	0.25
\$0	1.000	0.25

Car Insurance And V@R: 8%

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor accident	7.5%	-\$2500
Major accident	0.5%	-\$10 000

$$V@R_{\alpha}(X) = \sup \left\{t \ : \ \mathbb{P}[X \le t] < \alpha \right\} \qquad \alpha = 0.008$$

t	$\mathbb{P}[X \le t]$	α
-\$2500	0.005	0.008
-\$2400	0.008	0.008

Car Insurance And V@R

- ▶ X₁: no insurance (high risk)
- ► X₂: high deductible insurance (medium risk)
- ► X₃: low deductible insurance (low risk)

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
E		-\$238	-\$272	-\$330

Car Insurance And V@R

- ► X₁: no insurance (high risk)
- $ightharpoonup X_2$: high deductible insurance (medium risk)
- ► X₃: low deductible insurance (low risk)

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
E		-\$238	-\$272	-\$330
$V@R_{0.25}$		\$0	-\$112	-\$322

Car Insurance And V@R

- ► X₁: no insurance (high risk)
- $ightharpoonup X_2$: high deductible insurance (medium risk)
- ► X₃: low deductible insurance (low risk)

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
\mathbb{E}		-\$238	-\$272	-\$330
V@R _{0.25}		\$0	-\$112	-\$322
V@R _{0.05}		-\$2500	-\$2112	-\$422

Properties of V@R

+ Preserves affine transformations:

$$V@R_{\alpha}(\tau \cdot X + c) = \tau \cdot V@R_{\alpha}(X) + c$$

- + Simple and intuitive to model and understand
- + Compelling meaning in finance
- Ignores heavy tails
- Not convex

Properties of V@R

+ Preserves affine transformations:

$$V@R_{\alpha}(\tau \cdot X + c) = \tau \cdot V@R_{\alpha}(X) + c$$

- + Simple and intuitive to model and understand
- + Compelling meaning in finance
- Ignores heavy tails
- Not convex

Coherent measures of risk: Preserve V@R positives and improve negatives (Artzner et al. 1999)

Average Value at Risk

- AKA <u>Conditional Value at Risk</u> and Expected Shortfall
- Popular coherent risk measure ρ
- ► Simple definition for <u>atomless</u> distributions:

$$\mathrm{CV@R}_{\alpha}(X) = \mathbb{E}\Big[X \mid X \leq \mathrm{V@R}_{\alpha}(X)\Big]$$

- ▶ Recall: $V@R_{\alpha}(X) = \sup \{t : \mathbb{P}[X \le t] < \alpha\}$
- ► Convex extension of V@R (Rockafellar and Uryasev 2000)

V@R vs CV@R: Cumulative Distribution Function

CV@R vs V@R: Heavy Tails

A more expensive car?

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor acc.	7.5%	-\$2500
Major acc.	0.5%	-\$10 000

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor acc.	7.5%	-\$2500
Major acc.	0.5%	-\$1000000

CV@R vs V@R: Heavy Tails

A more expensive car?

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor acc.	7.5%	-\$2500
Major acc.	0.5%	-\$10000
$V@R_{0.05}$		-\$2500

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor acc.	7.5%	-\$2500
Major acc.	0.5%	-\$1000000
$V@R_{0.05}$		-\$2500

CV@R vs V@R: Heavy Tails

A more expensive car?

Event	\mathbb{P}	X_1
No accident	92%	\$0
Minor acc.	7.5%	-\$2500
Major acc.	0.5%	-\$1000000
$V@R_{0.05}$		-\$2500
$CV@R_{0.05}$		-\$102250

V@R: Heavy Tails and Financial Crisis

CV@R vs V@R: Continuity

Schedule

9:00-9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk: Properties and methods
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary

Schedule

9:00–9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Coherent Measures of Risk

► Generalize CV@R to allow more general models

Framework introduced in (Artzner et al. 1999)

Coherence: Requirements for risk measure ρ to satisfy

 Our treatment based on (Shapiro, Dentcheva, and Ruszczynski 2009) and (Follmer and Schied 2011)

Coherence Requirements of Risk Measures

1. Convexity: (really concavity for maximization!)

$$\rho(t \cdot X + (1-t) \cdot Y) \ge t \cdot \rho(X) + (1-t) \cdot \rho(Y)$$

2. Monotonicity:

If
$$X \succeq Y$$
, then $\rho(X) \ge \rho(Y)$

3. **Translation equivariance**: For a constant *a*:

$$\rho(X+a) = \rho(X) + a$$

4. **Positive homogeneity**: For t > 0, then:

$$\rho(t \cdot X) = t \cdot \rho(X)$$

Convexity

Why: Diversification should decrease risk (and it helps with optimization)

$$\rho(t\cdot X + (1-t)\cdot Y) \geq t\cdot \rho(X) + (1-t)\cdot \rho(Y)$$

Convexity

Why: Diversification should decrease risk (and it helps with optimization)

$$\rho(t \cdot X + (1 - t) \cdot Y) \ge t \cdot \rho(X) + (1 - t) \cdot \rho(Y)$$

Event	\mathbb{P}	X_1	X_2	$\frac{1}{2}X_1 + \frac{1}{2}X_2$
No accident	92%	\$0	-\$112	-\$56
Minor accident	7.5%	-\$2500	-\$2112	-\$2306
Major accident	0.5%	-\$10000	-\$2112	-\$6056
CV@R		-\$238	-\$272	-\$240

Convexity

Why: Diversification should decrease risk (and it helps with optimization)

$$\rho(t \cdot X + (1 - t) \cdot Y) \ge t \cdot \rho(X) + (1 - t) \cdot \rho(Y)$$

Event	\mathbb{P}	X_1	X_2	$\frac{1}{2}X_1 + \frac{1}{2}X_2$
No accident	92%	\$0	-\$112	-\$56
Minor accident	7.5%	-\$2500	-\$2112	-\$2306
Major accident	0.5%	-\$10000	-\$2112	-\$6056
CV@R		-\$238	-\$272	-\$240

$$-240 \ge \frac{-238 + -272}{2} = -255$$

Monotonicity

Why: Do not prefer an outcome that is always worse

If
$$X \succeq Y$$
, then $\rho(X) \ge \rho(Y)$

Monotonicity

Why: Do not prefer an outcome that is always worse

If
$$X \succeq Y$$
, then $\rho(X) \ge \rho(Y)$

 X_2' : Insurance with deductible of \$10 000

Event	\mathbb{P}	X_1	X_2'
No accident	92%	\$0	-\$112
Minor accident	7.5%	-\$2500	-\$2500
Major accident	0.5%	-\$10000	-\$10000
ρ		-\$238	-\$320

Monotonicity

Why: Do not prefer an outcome that is always worse

If
$$X \succeq Y$$
, then $\rho(X) \ge \rho(Y)$

 X_2' : Insurance with deductible of \$10 000

Event	\mathbb{P}	X_1	X_2'
No accident	92%	\$0	-\$112
Minor accident	7.5%	-\$2500	-\$2500
Major accident	0.5%	-\$10000	-\$10000
ρ		-\$238	-\$320

$$-\$320 < -\$238$$

Translation equivariance

Why: Risk is measured in the same units as the reward

$$\rho(X+a) = \rho(X) + a$$

Translation equivariance

Why: Risk is measured in the same units as the reward

$$\rho(X+a) = \rho(X) + a$$

More expensive insurance by \$100

Event	\mathbb{P}	X_2	X_2
No accident	92%	-\$112	-\$212
Minor accident	7.5%	-\$2112	-\$2212
Major accident	0.5%	-\$2112	-\$2212
ρ		-\$272	-\$372

Translation equivariance

Why: Risk is measured in the same units as the reward

$$\rho(X+a) = \rho(X) + a$$

More expensive insurance by \$100

Event	\mathbb{P}	X_2	X_2
No accident	92%	-\$112	-\$212
Minor accident	7.5%	-\$2112	-\$2212
Major accident	0.5%	-\$2112	-\$2212
ρ		-\$272	-\$372

$$-\$372 = -\$272 - \$100$$

Positive homogeneity

Why: Risk is measured in the same units as the reward

$$\rho(t \cdot X) = t \cdot \rho(X)$$

Positive homogeneity

Why: Risk is measured in the same units as the reward

$$\rho(t \cdot X) = t \cdot \rho(X)$$

What if the prices are in \in : $\$1 = \in 0.94$

Event	\mathbb{P}	X_2	X_2
No accident	92%	-\$112	-€ 105
Minor accident	7.5%	-\$2112	-€ 1985
Major accident	0.5%	-\$2112	-€ 1985
ρ		-\$272	-€ 256

Positive homogeneity

Why: Risk is measured in the same units as the reward

$$\rho(t \cdot X) = t \cdot \rho(X)$$

What if the prices are in \in : $\$1 = \in 0.94$

Event	\mathbb{P}	X_2	X_2
No accident	92%	-\$112	-€ 105
Minor accident	7.5%	-\$2112	-€ 1985
Major accident	0.5%	-\$2112	-€ 1985
ρ		-\$272	-€ 256

$$-\$272 = -\$256$$

Convex Risk Measures

Weaker definition than coherent risk measures

1. Convexity:

$$\rho(t \cdot X + (1-t) \cdot Y) \le t \cdot \rho(X) + (1-t) \cdot \rho(Y)$$

2. Monotonicity:

If
$$X \succeq Y$$
, then $\rho(X) \geq \rho(Y)$

3. **Translation equivariance**: For a constant *a*:

$$\rho(X+a) = \rho(X) + a$$

4. Positive homogeneity

Additional Property: Law Invariance

Value of risk measure is independent of the names of the events

Consider a coin flip

Event	\mathbb{P}	X	Y
Heads	1/2	1	0
Tails	1/2	0	1

Require that $\rho(X) = \rho(Y)$; violated by some coherent risk measures

<u>Distortion risk measures</u>: coherence & law invariance & comonotonicity

Simple Coherent Measures of Risk

Expectation:

$$\rho(x) = \mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

- 1. Convexity: $\mathbb{E}[X]$ is linear
- 2. Monotonicity: $\mathbb{E}[X] \geq \mathbb{E}[Y]$ if $X \succeq Y$
- 3. Translation equivariance: $\mathbb{E}[X + a] = \mathbb{E}[X] + a$
- 4. Positive homogeneity: $\mathbb{E}[t \cdot X] = t \cdot \mathbb{E}[X]$ for t > 0

Simple Coherent Measures of Risk

Expectation:

$$\rho(x) = \mathbb{E}[X] = \sum_{\omega \in \Omega} X(\omega) P(\omega)$$

- 1. Convexity: $\mathbb{E}[X]$ is linear
- 2. Monotonicity: $\mathbb{E}[X] \geq \mathbb{E}[Y]$ if $X \succeq Y$
- 3. Translation equivariance: $\mathbb{E}[X + a] = \mathbb{E}[X] + a$
- 4. Positive homogeneity: $\mathbb{E}[t \cdot X] = t \cdot \mathbb{E}[X]$ for t > 0

Worst case:

$$\rho(X) = \min[X] = \min_{\omega \in \Omega} X(\omega)$$

- 1. Convexity: $\min[X]$ is convex
- 2. Monotonicity: $\min[X] \ge \min[Y]$ if $X \succeq Y$
- 3. Translation equivariance: $\min[X + a] = \min[X] + a$
- 4. Positive homogeneity: $\min[t \cdot X] = t \cdot \mathbb{E}[X]$ for t > 0

CV@R for Discrete Distributions

Simple definition is not coherent

$$CV@R_{\alpha}(X) = \mathbb{E}\Big[X \mid X \le V@R_{\alpha}(X)\Big]$$

 Violates convexity when distribution has atoms (discrete distributions)

CV@R for Discrete Distributions

Simple definition is not coherent

$$CV@R_{\alpha}(X) = \mathbb{E}\Big[X \mid X \le V@R_{\alpha}(X)\Big]$$

- Violates convexity when distribution has atoms (discrete distributions)
- ► Coherent definition of CV@R:

$$CV@R_{\alpha}(X) = \sup_{t} \left\{ t + \frac{1}{\alpha} \mathbb{E}[X - t]_{-} \right\}$$

• $t^{\star} = V@R_{\alpha}(X)$ when the distribution is atom-less

CV@R for Discrete Distributions

Simple definition is not coherent

$$CV@R_{\alpha}(X) = \mathbb{E}\Big[X \mid X \le V@R_{\alpha}(X)\Big]$$

- Violates convexity when distribution has atoms (discrete distributions)
- ► Coherent definition of CV@R:

$$CV@R_{\alpha}(X) = \sup_{t} \left\{ t + \frac{1}{\alpha} \mathbb{E}[X - t]_{-} \right\}$$

- $t^{\star} = V@R_{\alpha}(X)$ when the distribution is atom-less
- Definitions the same for continuous distributions

Computing CV@R

▶ Discrete distributions: Solve a linear program

$$\begin{aligned} \max_{t,y} & t + \frac{1}{\alpha} p^{\top} y \\ \text{s.t.} & y \leq X - t, \\ & y \leq \mathbf{0} \end{aligned}$$

► Continuous distributions: Closed form for many (Nadarajah, Zhang, and Chan 2014; Andreev, Kanto, and Malo 2005)

Car Insurance and CV@R

- ► X₁ no insurance
- $ightharpoonup X_2$ high deductible insurance
- $ightharpoonup X_3$ low deductible insurance

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10 000	-\$2112	-\$422
E		-\$238	-\$272	-\$330

Car Insurance and CV@R

- $ightharpoonup X_1$ no insurance
- $lacktriangledown X_2$ high deductible insurance
- $ightharpoonup X_3$ low deductible insurance

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
\mathbb{E}		-\$238	-\$272	-\$330
V@R _{0.25}		\$0	-\$112	-\$322
$CV@R_{0.25}$		-\$950	-\$752	-\$354

Car Insurance and CV@R

- $ightharpoonup X_1$ no insurance
- $ightharpoonup X_2$ high deductible insurance
- $ightharpoonup X_3$ low deductible insurance

Event	\mathbb{P}	X_1	X_2	X_3
No accident	92%	\$0	-\$112	-\$322
Minor accident	7.5%	-\$2500	-\$2112	-\$422
Major accident	0.5%	-\$10000	-\$2112	-\$422
E		-\$238	-\$272	-\$330
V@R _{0.25}		\$0	-\$112	-\$322
$CV@R_{0.25}$		-\$950	-\$752	-\$354
$V@R_{0.05}$		-\$2500	-\$2112	-\$422
$CV@R_{0.05}$		-\$3250	-\$2112	-\$422

Robust Representation of Coherent Risk Measures

- Important representation for analysis and optimization
- ▶ For any coherent risk measure ρ :

$$\rho(X) = \min_{\xi \in \mathfrak{A}} \mathbb{E}_{\xi} [X] = \inf_{\xi \in \mathfrak{A}} \xi^{\top} X$$

Robust Representation of Coherent Risk Measures

- Important representation for analysis and optimization
- For any coherent risk measure ρ :

$$\rho(X) = \min_{\xi \in \mathfrak{A}} \mathbb{E}_{\xi} [X] = \inf_{\xi \in \mathfrak{A}} \xi^{\top} X$$

- ▶ A is a set of measures such that is:
 - convex
 - 2. bounded
 - 3. closed

Robust Representation of Coherent Risk Measures

- Important representation for analysis and optimization
- For any coherent risk measure ρ :

$$\rho(X) = \min_{\xi \in \mathfrak{A}} \mathbb{E}_{\xi} [X] = \inf_{\xi \in \mathfrak{A}} \xi^{\top} X$$

- A is a set of measures such that is:
 - 1. convex
 - 2. bounded
 - 3. closed
- Proof: Double convex conjugate
 - Convex conjugate:

$$\rho^{\star}(y) = \sup_{x} x^{\top} y - \rho(x)$$

► Fenchel–Moreau theorem:

$$\rho^{\star\star}(x) = \rho(x)$$

Robust Set for CV@R

$$CV@R_{\alpha}(X) = \sup_{t} \left\{ t + \frac{1}{\alpha} \mathbb{E}[X - t]_{-} \right\}$$

Robust representation:

$$\rho(X) = \inf_{\xi \in \mathfrak{A}} \mathbb{E}_{\xi} [X]$$

▶ Robust set for probability distribution *P*:

$$\mathfrak{A} = \left\{ \xi \ge \mathbf{0} \mid \xi \le \frac{1}{\alpha} P, \ \mathbf{1}^{\top} \xi = 1 \right\}$$

Robust Set for CV@R

Robust representation:

$$\rho(X) = \min_{\xi \in \mathfrak{A}} \mathbb{E}_{\xi} [X]$$

$$\mathfrak{A} = \left\{ \xi \ge \mathbf{0} \mid \xi \le \frac{1}{\alpha} P, \ \mathbf{1}^{\top} \xi = 1 \right\}$$

- ▶ Random variable: X = [10, 5, 2]
- ▶ Probability distribution: p = [1/3, 1/3, 1/3]
- $CV@R_{1/2}(X) =$

$$\min_{\xi \geq \mathbf{0}} \quad 10\,\xi_1 + 5\,\xi_2 + 2\,\xi_3$$

$$\xi_i \leq \frac{1}{\alpha}\,p_i = \frac{1}{1/2}1/3 = \frac{2}{3} \qquad \xi_1 + \xi_2 + \xi_3 = 1$$

Other Coherent Risk Measures

- 1. Combination of expectation and $\mathrm{CV}@\mathrm{R}$
- 2. Entropic risk measure
- 3. Coherent entropic risk measure (convex, incoherent)
- 4. Risk measures from utility functions
- 5. . . .

Convex Combination of Expectation and CV@R

► CV@R ignores the mean return

Risk-averse solutions bad in expectation

Practical trade-off: Combine mean and risk

$$\rho(X) = c \cdot \mathbb{E}[X] + (1 - c) \cdot \text{CV@R}_{\alpha}(X)$$

Entropic Risk Measure

$$\rho(X) = -1/\tau \ln \mathbb{E}\left[e^{-\tau \cdot X}\right] \quad \tau > 0$$

Convex risk measure

Entropic Risk Measure

$$\rho(X) = -1/\tau \ln \mathbb{E}\left[e^{-\tau \cdot X}\right] \quad \tau > 0$$

- Convex risk measure
- Incoherent (violates translation invariance)
- No robust representation

Entropic Risk Measure

$$\rho(X) = -1/\tau \ln \mathbb{E}\left[e^{-\tau \cdot X}\right] \quad \tau > 0$$

- Convex risk measure
- Incoherent (violates translation invariance)
- No robust representation
- ► Coherent entropic risk measure: (Föllmer and Knispel 2011)

$$\rho(X) = \max_{\xi \geq \mathbf{0}} \left\{ \mathbb{E}_{\xi}[X] \mid KL(\xi \mid P) \leq c, \mathbf{1}^{\top} \xi = 1 \right\}$$

Risk Measure From Utility Function

- ▶ Concave utility function $u(\cdot)$
- Construct a coherent risk measure from g?

Risk Measure From Utility Function

- ▶ Concave utility function $u(\cdot)$
- Construct a coherent risk measure from g?
- Direct construction:

$$\rho(X) = \mathbb{E}[u(X)]$$

Not coherent or convex

Risk Measure From Utility Function

- ▶ Concave utility function $u(\cdot)$
- Construct a coherent risk measure from g?
- Direct construction:

$$\rho(X) = \mathbb{E}[u(X)]$$

Not coherent or convex

 Optimized Certainty Equivalent (Ben-Tal and Teboulle 2007)

$$\rho(X) = \sup_{t} \left(t + \mathbb{E}[g(X - t)] \right)$$

Optimized Certainty Equivalent

$$\rho(X) = \sup_{t} \left(t + \mathbb{E}[g(X - t)] \right)$$

▶ How much consume now given uncertain future

Optimized Certainty Equivalent

$$\rho(X) = \sup_{t} \left(t + \mathbb{E}[g(X - t)] \right)$$

▶ How much consume now given uncertain future

- Convex risk measure for any concave u
- ▶ **Coherent** risk measure for pos. homogeneous *u*

Optimized Certainty Equivalent

$$\rho(X) = \sup_{t} \left(t + \mathbb{E}[g(X - t)] \right)$$

- ▶ How much consume now given uncertain future
- ▶ **Convex** risk measure for any concave *u*
- ▶ **Coherent** risk measure for pos. homogeneous *u*

- ightharpoonup Exponential u: OCE = entropic risk measure
- ▶ Piecewise linear u: OCE = CV@R

Recommended References

 Lectures on Stochastic Programming: Modeling and Theory (Shapiro, Dentcheva, and Ruszczynski 2014)

► Stochastic Finance: An Introduction in Discrete Time (Follmer and Schied 2011)

Remainder of Tutorial: Multistage Optimization

► How to apply risk measures when optimizing over multiple time steps

Results in machine learning and reinforcement learning

▶ Time or dynamic consistency in multiple time steps

Schedule

9:00-9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk: Properties and methods
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary

Schedule

9:00-9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk: Properties and methods
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Risk Measures in Reinforcement Learning

Please see the other slide deck

Schedule

9:00-9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk: Properties and methods
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary

Schedule

9:00-9:20	Introduction to risk-averse modeling
9:20-9:40	Value at Risk and Average Value at Risk
9:40-9:50	Break
9:50-10:30	Coherent Measures of Risk: Properties and methods
10:30-11:00	Coffee break
11:00-12:30	Risk-averse reinforcement learning
12:30-12:40	Break
12:40-12:55	Time consistent measures of risk

Example: Driving Test Discount

Option 1: Plain Insurance

- ► Cost: \$9.00
- ▶ No deductible
- Certain expected outcome:

$$\mathbb{E}[X_1] = -9.00$$

$$\rho(X_1) = \mathbb{E}[X_1] = -9.00$$

Example: Driving Test Discount

Option 1: Plain Insurance

- ► Cost: \$9.00
- No deductible
- Certain expected outcome:

$$\mathbb{E}[X_1] = -9.00$$

$$\rho(X_1) = \mathbb{E}[X_1] = -9.00$$

Option 2: Custom Insurance

- Take a safety exam
- ▶ Pass with probability 1/2
 - OK $[\mathbb{P} = 2/3]$: +\$5.00
 - ▶ Not $[\mathbb{P} = \frac{2}{3}]$: -\$20.00
- ► Fail with probability 1/2
 - ▶ OK [$\mathbb{P} = \frac{2}{3}$]: -\$5.00
 - ▶ Not $[\mathbb{P} = \frac{2}{3}]$: -\$10.00

Example: Driving Test Discount

Option 1: Plain Insurance

- ► Cost: \$9.00
- No deductible
- Certain expected outcome:

$$\mathbb{E}[X_1] = -9.00$$

$$\rho(X_1) = \mathbb{E}[X_1] = -9.00$$

Option 2: Custom Insurance

- Take a safety exam
- ► Pass with probability 1/2
 - OK $[\mathbb{P} = 2/3]$: +\$5.00
 - ▶ Not $[\mathbb{P} = \frac{2}{3}]$: -\$20.00
- ► Fail with probability 1/2
 - ▶ OK [$\mathbb{P} = \frac{2}{3}$]: -\$5.00
 - Not $[\mathbb{P} = \frac{2}{3}]$: -\$10.00

Risk measure: $\rho = \text{CV@R}_{2/3}$

Risk Measure of Option 2

Risk measure:

$$\rho(X_2) = \mathrm{CV@R}_{2/3}(X_2)$$

\mathbb{P}	X_2
1/6	-5
1/6	-5
1/6	-10
1/6	5
1/6	5
1/6	-20

Risk Measure of Option 2

Risk measure:

$$\rho(X_2) = \text{CV@R}_{2/3}(X_2)$$

\mathbb{P}	X_2
1/6	-5
1/6	-5
1/6	-10
1/6	5
1/6	5
1/6	-20

$$\rho(X_2) = \frac{-5 - 5 - 10 - 20}{4} =$$
$$= -10.0 < -9.0 = \rho(X_1)$$

Risk Measure of Option 2

Risk measure:

$$\rho(X_2) = \text{CV@R}_{2/3}(X_2)$$

\mathbb{P}	X_2
1/6	-5
1/6	-5
1/6	-10
1/6	5
1/6	5
1/6	-20

$$\rho(X_2) < \rho(X_1)$$

Prefer option 1

Recall we **prefer option 1**: $\rho(X_1) = -9$

\mathbb{P}	1/3	1/3	1/3
X_2	-20	5	5

Recall we **prefer option 1**: $\rho(X_1) = -9$

\mathbb{P}	1/3	1/3	1/3
X_2	-20	5	5

$$\rho(X_2 \mid \mathsf{Pass}) = \frac{-20+5}{2} = -7.5$$

If pass, prefer option 2

Recall we **prefer option 1**: $\rho(X_1) = -9$

\mathbb{P}	1/3	1/3	1/3
X_2	-10	-5	-5

Recall we **prefer option 1**: $\rho(X_1) = -9$

\mathbb{P}	1/3	1/3	1/3
X_2	-10	-5	-5

Recall we **prefer option 1**: $\rho(X_1) = -9$

\mathbb{P}	1/3	1/3	1/3
X_2	-10	-5	-5

$$\rho(X_2 \mid \mathsf{Fail}) = \frac{-15+5}{2} = -7.5$$

If fail, prefer option 2

Recall we **prefer option 1**: $\rho(X_1) = -9$

1/3	Fail test	$)_{i_{\ell}}$
110	13	_3\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
$\begin{bmatrix} NOK & -10 \end{bmatrix}$	$\begin{bmatrix} OK & -5 \end{bmatrix}$	$lue{0}$ K -5

\mathbb{P}	1/3	1/3	1/3
X_2	-20	5	5

$$\rho(X_2 \mid \mathsf{Pass}) = \frac{-20+5}{2} = -7.5$$
 $\rho(X_2 \mid \mathsf{Fail}) = \frac{-15+5}{2} = -7.5$

$$ho(X_2\mid \mathsf{Fail}) = rac{-15+5}{2} = -7.5$$

If pass, prefer option 2

If fail, prefer option 2

Time inconsistent behavior (Roorda, Schumacher, and Engwerda 2005; Iancu, Petrik, and Subramanian 2015)

Time Consistent Risk Measures

▶ Filtration (scenario tree) of rewards with *T* levels:

$$X_1, X_2, X_3, \ldots, X_T$$

Dynamic risk measure at time *t*:

$$\rho_t(X_t + \cdots + X_T)$$

Time Consistent Risk Measures

► Filtration (scenario tree) of rewards with *T* levels:

$$X_1, X_2, X_3, \ldots, X_T$$

Dynamic risk measure at time t:

$$\rho_t(X_t + \cdots + X_T)$$

▶ **Time consistent**: if for all *X,Y* (also dynamic consistent)

$$\rho_{t+1}(X_t + \cdots) \ge \rho_{t+1}(Y_t + \cdots) \Rightarrow \rho_t(X_t + \cdots) \ge \rho_t(Y_t + \cdots)$$

Time Consistent Risk Measures

► Filtration (scenario tree) of rewards with *T* levels:

$$X_1, X_2, X_3, \ldots, X_T$$

Dynamic risk measure at time *t*:

$$\rho_t(X_t + \cdots + X_T)$$

▶ **Time consistent**: if for all *X,Y* (also dynamic consistent)

$$\rho_{t+1}(X_t + \cdots) \ge \rho_{t+1}(Y_t + \cdots) \Rightarrow \rho_t(X_t + \cdots) \ge \rho_t(Y_t + \cdots)$$

▶ Similar to subproblem optimality in programming optimality

Time Consistency via Iterated Risk Mappings

Time consistent risk measures must be composed of iterated risk mappings (Roorda, Schumacher, and Engwerda 2005):

$$\mu_1, \mu_2, \ldots, \mu_t$$

Dynamic risk measure:

$$\rho_t(X_t + \dots + X_T) = \mu_t(X_t + \mu_{t+1}(X_{t+1} + \mu_{t+2}(x_{t+3} + \dots)))$$

▶ Each μ_t : a coherent risk measure applied on subtree of filtration

Time Consistency via Iterated Risk Mappings

Time consistent risk measures must be composed of iterated risk mappings (Roorda, Schumacher, and Engwerda 2005):

$$\mu_1, \mu_2, \ldots, \mu_t$$

Dynamic risk measure:

$$\rho_t(X_t + \dots + X_T) = \mu_t(X_t + \mu_{t+1}(X_{t+1} + \mu_{t+2}(x_{t+3} + \dots)))$$

- ▶ Each μ_t : a coherent risk measure applied on subtree of filtration
- Markov risk measures for MDPs (Ruszczynski 2010)

$$\rho(X_2\mid \mathsf{Pass}) = \frac{-20+5}{2} = -7.5$$

$$\rho(X_2) = \rho(-7.5) = -7.5 > -9$$

$$\rho(X_2 \mid \mathsf{Pass}) = \frac{-20 + 5}{2} = -7.5 \qquad \rho(X_2 \mid \mathsf{Fail}) = \frac{-15 + 5}{2} = -7.5$$

$$\rho(X_2 \mid \mathsf{Fail}) = \frac{-15+5}{2} = -7.5$$

$$\rho(X_2) = \rho(-7.5) = -7.5 > -9$$

Consistently prefer option 1 throughout the execution

Approximating Inconsistent Risk Measures

- Time consistent risk measures are difficult to specify
- Approximate an inconsistent risk measure by a consistent one?
- **Best lower bound**: e.g. what is the best α_1, α_2 such that

$$\mathrm{CV@R}_{\alpha_1}(\mathrm{CV@R}_{\alpha_2}(X)) \leq \mathrm{CV@R}_{\alpha}(X)$$
 for all X

Best upper bound: e.g. what is the best α_1, α_2 such that

$$CV@R_{\alpha_1}(CV@R_{\alpha_2}(X)) \ge CV@R_{\alpha}(X)$$
 for all X

(Iancu, Petrik, and Subramanian 2015)

Best Time Consistent Bounds

- Compare robust sets of consistent and inconsistent measures
- Main insight: need to compare down-monotone closures of robust sets

Time Consistent Bounds: Main Results

Lower consistent bound:

- Uniformly tightest bound can be constructed in polynomial time
- Method: rectangularization

Upper consistent bound:

- ▶ NP hard to even evaluate how tight the approximation is
- Approximation can be tighter than the lower bound

Planning with Time Consistent Risk Measures

- Stochastic dual dynamic programming (Shapiro 2012)
- Applied in reinforcement learning (Petrik and Subramanian 2012)
- Only entropic dynamically consistent risk measures are law invariant (Kupper and Schachermayer 2006)

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary

Risk Measures: Many Other Topics

1. Elicitation of risk measures

2. Estimation of risk measure from samples

3. Relationship to acceptance sets

4. Relationship to robust optimization

 Coherent risk measures are a convenient and established risk aversion framework

- Coherent risk measures are a convenient and established risk aversion framework
- Computations with coherent risk measure are more efficient than with utility functions

- Coherent risk measures are a convenient and established risk aversion framework
- Computations with coherent risk measure are more efficient than with utility functions
- ► Risk measures (V@R, CV@R) are more intuitive than utility functions

- Coherent risk measures are a convenient and established risk aversion framework
- Computations with coherent risk measure are more efficient than with utility functions
- ► Risk measures (V@R, CV@R) are more intuitive than utility functions
- Time consistency is important in dynamic settings, but can be difficult to achieve (open research problems)

- Coherent risk measures are a convenient and established risk aversion framework
- Computations with coherent risk measure are more efficient than with utility functions
- ► Risk measures (V@R, CV@R) are more intuitive than utility functions
- Time consistency is important in dynamic settings, but can be difficult to achieve (open research problems)
- Risk measures are making inroads in reinforcement learning and artificial intelligence

nmary

Thank you!!

Bibliography I

- Andreev, Andriy, Antti Kanto, and Pekka Malo (2005). "Closed-Form Calculation of Cvar". In: Sweedish School of Economics.
- Artzner, Philippe et al. (1999). "Coherent Measures of Risk". In: *Mathematical Finance* 9, pp. 203–228. ISSN: 14679965. DOI: 10.1111/1467-9965.00068.
- Ben-Tal, Aharon and Marc Teboulle (2007). "An Old-New Concept of Convex Risk Measures: The Optimized Certainty Equivalent".

In: Mathematical Finance 17, pp. 449-476. URL: http://onlinelibrary.wiley.com/doi/10.1111/j.1467-

9965.2007.00311.x/full.

Bibliography II

Föllmer, Hans and Thomas Knispel (2011). "Entropic Risk Measures: Coherence Vs. Convexity, Model Ambiguity and Robust Large Deviations". In: Stochastics and Dynamics 11.02n03, pp. 333–351. ISSN: 0219-4937. DOI: 10.1142/S0219493711003334. URL: http://www.worldscientific.com/doi/abs/10.1142/S0219493711003334.

Follmer, Hans and Alexander Schied (2011). Stochastic Finance: An Introduction in Discrete Time. 3rd. Walter de Gruyter.

Friedman, Daniel et al. (2014). Risky Curves: On the Empirical Failure of Expected Utility.

Bibliography III

lancu, Dan A, Marek Petrik, and Dharmashankar Subramanian
 (2015). "Tight Approximations of Dynamic Risk Measures". In:
 Mathematics of Operations Research 40.3, pp. 655-682. ISSN:
 0364-765X. DOI: 10.1287/moor.2014.0689. arXiv:
 1106.6102. URL: http://pubsonline.informs.org/doi/
 abs/10.1287/moor.2014.0689.

Kupper, Michael and Walter Schachermayer (2006). "Representation results for law invariant time consistent functions". In: Mathematics and Financial Economics 16.2, pp. 419-441. URL: http://link.springer.com/article/10.1007/s11579-009-0019-9.

Bibliography IV

- Nadarajah, Saralees, Bo Zhang, and Stephen Chan (2014).

 "Estimation methods for expected shortfall". In: Quantitative Finance 14.2, pp. 271–291. ISSN: 1469-7688. DOI: 10.1080/14697688.2013.816767. URL: http://www.tandfonline.com/doi/abs/10.1080/14697688.2013.816767.
- Petrik, Marek and Dharmashankar Subramanian (2012). "An approximate solution method for large risk-averse Markov decision processes". In: *Uncertainty in Artificial Intelligence* (*UAI*). URL: http://arxiv.org/abs/1210.4901.
- Rockafellar, R. Tyrrell and S. Uryasev (2000). "Optimization of conditional value-at-risk". In: *Journal of Risk* 2, pp. 21–41.

Bibliography V

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-9965.2005.00252.x/full.

Ruszczynski, Andrzej (2010). "Risk-averse dynamic programming for Markov decision processes". In: *Mathematical Programming*

B 125.2, pp. 235–261. ISSN: 0025-5610. DOI:

10.1007/s10107-010-0393-3. URL:

http://link.springer.com/10.1007/s10107-010-0393-3.

Schoemaker, P.J.H. (1980). Experiments on Decisions under Risk: The Expected Utility Hypothesis.

Bibliography VI

http://dx.doi.org/10.1137/1.9780898718751.

Shapiro, Alexander (2012). "Minimax and risk averse multistage stochastic programming". In: European Journal of Operational Research 219.3, pp. 719–726. ISSN: 03772217. DOI: 10.1016/j.ejor.2011.11.005. URL:

http://dx.doi.org/10.1016/j.ejor.2011.11.005.

Shapiro, Alexander, Darinka Dentcheva, and Andrzej Ruszczynski (2009). Lectures on Stochastic Programming. SIAM. ISBN: 9780898716870