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Introduction to Risk Averse Modeling

Schedule

9:00–9:20 Introduction to risk-averse modeling
9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break

9:50–10:30 Coherent Measures of Risk: Properties and methods
10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk
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Introduction to Risk Averse Modeling

Risk Aversion

Risk (Wikipedia):
Risk is the potential of����gaining or losing something of

value. . . . Uncertainty is a potential, unpredictable, and
uncontrollable outcome; risk is a consequence of action
taken in spite of uncertainty.

Risk aversion (Wikipedia):
. . . risk aversion is the behavior of humans, when

exposed to uncertainty, to attempt to reduce that
uncertainty. . . .

Tutorial: Modern methods for risk-averse decision making
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Introduction to Risk Averse Modeling

Desire for Risk Aversion

I Empirical evidence:
1. People buy insurance
2. Diversifying financial portfolios
3. Experimental results

I Other reasons:
I Reduce contingency planning

Risk-Averse Decision Making and Control



Introduction to Risk Averse Modeling

Where Risk Aversion Matters

I Financial portfolios

I Heath-care decisions

I Agriculture

I Public infrastructure

I Self-driving cars?
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Introduction to Risk Averse Modeling

When Risks Are Ignored . . .

Seawalls overflow in a tsunami

Housing bubble leads to a
financial collapse

Risk-Averse Decision Making and Control



Introduction to Risk Averse Modeling

Need to Quantify Risk
I Mitigating risk is expensive, how much is it worth?

I Expected utility theory:

E[u(X)] = E[utility(X)]

I Exponential utility function (Bernoulli functions):

u(x) =
1− e−a x

a
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Introduction to Risk Averse Modeling

Example: Buying Car Insurance
Car value: $10 000

Insurance options
Option Deductible Cost
X1 $10 000 $0
X2 $2 000 $112
X3 $100 $322

Expected utility:
Event P X1 X2 X3

No accident 92% $0 −$112 −$322
Minor accident 7.5% −$2 500 −$2 112 −$422
Major accident 0.5% −$10 000 −$2 112 −$422

E −$237.50 −$272.00 −$330.00

Risk-neutral choice: no insurance

Risk-Averse Decision Making and Control
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Introduction to Risk Averse Modeling

Risk Averse Utility Functions
I Exponential utility function

u(x) =
1− exp(−10−6 · (x+ 105))

10−6

I X1 – no insurance
I X2 – high deductible insurance

Event P X1 u(X1) X2 u(X2)
No accident 92% $0 1 111 −$112 1 111
Minor accident 7.5% −$2 500 1 109 −$2 112 1 110
Major accident 0.5% −$10 000 0 −$2 112 1 110
E −$237.50 1 105 −$272.00 1111

Prefer insurance, but difficult to interpret and elicit
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Introduction to Risk Averse Modeling

Drawbacks of Expected Utility Theory

(Schoemaker 1980)

1. Does not explain human behavior
2. Difficult to elicit utilities
3. Complicates optimization (Friedman et al. 2014)
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Introduction to Risk Averse Modeling

Major Alternatives for Measuring Risk

1. Markowitz portfolios: Penalize dispersion risk

min
c≥0

Var
[∑

i

ci ·Xi

]
s.t. E

[∑
i

ci ·Xi

]
= µ,

∑
i

ci = 1

Limited modeling capability and also penalizes upside

2. Risk measures: (Artzner et al. 1999)

I Value at risk (V@R)
I Conditional value at risk (CV@R)
I Coherent measures of risk
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Introduction to Risk Averse Modeling

Coherent Measures of Risk

Topic of this tutorial

I Alternative to expected utility theory

+ Flexible modeling framework
+ Convenient to use with optimization and decision making
+ Easier to elicit than utilities
− Difficulties in sequential decision making
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(Average) Value at Risk

Schedule

9:00–9:20 Introduction to risk-averse modeling
9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break

9:50–10:30 Coherent Measures of Risk: Properties and methods
10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk
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(Average) Value at Risk

Risk Measure

Risk measure: function ρ that maps random variable to a real
number

I Expectation is a risk measure

ρ(X) = E[X] =
∑
ω∈Ω

X(ω)P (ω)

I Risk neutral
I Worst-case is a risk measure

ρ(X) = min[X] = min
ω∈Ω

X(ω)

I Very risk averse
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(Average) Value at Risk

V@R: Value at Risk

ρ(X) = V@Rα(X) = sup
{
t : P[X ≤ t] < α

}
Rewards smaller than V@Rα(X) with probability at most α

Example α values:
α = 0.5 Median

α = 0.3 More conservative
α = 0.05 Conservative
α = 0 Worst case

Risk-Averse Decision Making and Control
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(Average) Value at Risk

V@R Example 1: Cumulative Distribution Function

V@R0.05(X) = −1.7
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(Average) Value at Risk

V@R Example 2: Cumulative Distribution Function

V@R0.3(X) = −0.5
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(Average) Value at Risk

Car Insurance And V@R: 25%

Event P X1

No accident 92% $0
Minor accident 7.5% −$2 500
Major accident 0.5% −$10 000

−15000 −10000 −5000 0 5000

Reward ($)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

V@Rα(X) = sup
{
t : P[X ≤ t] < α

}
α = 0.25

t P[X ≤ t] α

−$2 600 0.005 0.25
−$2 500 0.008 0.25

$0 1.000 0.25

Risk-Averse Decision Making and Control



(Average) Value at Risk

Car Insurance And V@R: 8%

Event P X1

No accident 92% $0
Minor accident 7.5% −$2 500
Major accident 0.5% −$10 000

−15000 −10000 −5000 0 5000

Reward ($)

0.0

0.2

0.4

0.6

0.8

1.0

C
D

F

V@Rα(X) = sup
{
t : P[X ≤ t] < α

}
α = 0.008

t P[X ≤ t] α

−$2 500 0.005 0.008
−$2400 0.008 0.008

Risk-Averse Decision Making and Control



(Average) Value at Risk

Car Insurance And V@R

I X1: no insurance (high risk)
I X2: high deductible insurance (medium risk)
I X3: low deductible insurance (low risk)

Event P X1 X2 X3

No accident 92% $0 −$112 −$322
Minor accident 7.5% −$2 500 −$2 112 −$422
Major accident 0.5% −$10 000 −$2 112 −$422
E −$238 −$272 −$330

Risk-Averse Decision Making and Control



(Average) Value at Risk

Car Insurance And V@R

I X1: no insurance (high risk)
I X2: high deductible insurance (medium risk)
I X3: low deductible insurance (low risk)
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(Average) Value at Risk

Car Insurance And V@R

I X1: no insurance (high risk)
I X2: high deductible insurance (medium risk)
I X3: low deductible insurance (low risk)

Event P X1 X2 X3

No accident 92% $0 −$112 −$322
Minor accident 7.5% −$2 500 −$2 112 −$422
Major accident 0.5% −$10 000 −$2 112 −$422
E −$238 −$272 −$330
V@R0.25 $0 −$112 −$322
V@R0.05 −$2 500 −$2 112 −$422
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(Average) Value at Risk

Properties of V@R

+ Preserves affine transformations:

V@Rα(τ ·X + c) = τ ·V@Rα(X) + c

+ Simple and intuitive to model and understand
+ Compelling meaning in finance
− Ignores heavy tails
− Not convex

Coherent measures of risk: Preserve V@R positives and improve
negatives (Artzner et al. 1999)
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(Average) Value at Risk

Average Value at Risk

I AKA Conditional Value at Risk and Expected Shortfall
I Popular coherent risk measure ρ
I Simple definition for atomless distributions:

CV@Rα(X) = E
[
X | X ≤ V@Rα(X)

]
I Recall: V@Rα(X) = sup

{
t : P[X ≤ t] < α

}
I Convex extension of V@R (Rockafellar and Uryasev 2000)
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(Average) Value at Risk

V@R vs CV@R: Cumulative Distribution Function

V@R0.3(X) = −0.5
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(Average) Value at Risk

CV@R vs V@R: Heavy Tails

A more expensive car?

Event P X1

No accident 92% $0
Minor acc. 7.5% −$2 500
Major acc. 0.5% −$10 000

V@R0.05 −$2 500
CV@R0.05 −$3 250

Event P X1

No accident 92% $0
Minor acc. 7.5% −$2 500
Major acc. 0.5% −$1 000 000

V@R0.05 −$2 500
CV@R0.05 −$102 250

Risk-Averse Decision Making and Control



(Average) Value at Risk

CV@R vs V@R: Heavy Tails

A more expensive car?

Event P X1

No accident 92% $0
Minor acc. 7.5% −$2 500
Major acc. 0.5% −$10 000
V@R0.05 −$2 500

CV@R0.05 −$3 250

Event P X1

No accident 92% $0
Minor acc. 7.5% −$2 500
Major acc. 0.5% −$1 000 000
V@R0.05 −$2 500

CV@R0.05 −$102 250

Risk-Averse Decision Making and Control
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(Average) Value at Risk

V@R: Heavy Tails and Financial Crisis
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(Average) Value at Risk

CV@R vs V@R: Continuity
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(Average) Value at Risk

Schedule

9:00–9:20 Introduction to risk-averse modeling
9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break
9:50–10:30 Coherent Measures of Risk: Properties and methods

10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk
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Coherent Measures of Risk

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary
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Coherent Measures of Risk

Schedule

9:00–9:20 Introduction to risk-averse modeling
9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break

9:50–10:30 Coherent Measures of Risk
10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk
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Coherent Measures of Risk

Coherent Measures of Risk

I Generalize CV@R to allow more general models

I Framework introduced in (Artzner et al. 1999)

I Coherence: Requirements for risk measure ρ to satisfy

I Our treatment based on (Shapiro, Dentcheva, and
Ruszczynski 2009) and (Follmer and Schied 2011)

Risk-Averse Decision Making and Control



Coherent Measures of Risk

Coherence Requirements of Risk Measures

1. Convexity: (really concavity for maximization!)

ρ(t ·X + (1− t) · Y ) ≥ t · ρ(X) + (1− t) · ρ(Y )

2. Monotonicity:

If X � Y , then ρ(X) ≥ ρ(Y )

3. Translation equivariance: For a constant a:

ρ(X + a) = ρ(X) + a

4. Positive homogeneity: For t > 0, then:

ρ(t ·X) = t · ρ(X)

Risk-Averse Decision Making and Control



Coherent Measures of Risk

Convexity
Why: Diversification should decrease risk (and it helps with
optimization)

ρ(t ·X + (1− t) · Y ) ≥ t · ρ(X) + (1− t) · ρ(Y )

Event P X1 X2
1
2X1 +

1
2X2

No accident 92% $0 −$112 −$56
Minor accident 7.5% −$2 500 −$2 112 −$2 306
Major accident 0.5% −$10 000 −$2 112 −$6 056
CV@R −$238 −$272 −$240

−240 ≥ −238 +−272
2

= −255

Risk-Averse Decision Making and Control
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Coherent Measures of Risk

Monotonicity
Why: Do not prefer an outcome that is always worse

If X � Y , then ρ(X) ≥ ρ(Y )

X ′2: Insurance with deductible of $10 000
Event P X1 X ′2
No accident 92% $0 −$112
Minor accident 7.5% −$2 500 −$2 500
Major accident 0.5% −$10 000 −$10 000
ρ −$238 −$320

−$320 ≤ −$238

Risk-Averse Decision Making and Control
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Coherent Measures of Risk

Translation equivariance
Why: Risk is measured in the same units as the reward

ρ(X + a) = ρ(X) + a

More expensive insurance by $100
Event P X2 X2

No accident 92% −$112 −$212
Minor accident 7.5% −$2 112 −$2 212
Major accident 0.5% −$2 112 −$2 212
ρ −$272 −$372

−$372 = −$272− $100

Risk-Averse Decision Making and Control
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Major accident 0.5% −$2 112 −$2 212
ρ −$272 −$372

−$372 = −$272− $100
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Coherent Measures of Risk

Positive homogeneity
Why: Risk is measured in the same units as the reward

ρ(t ·X) = t · ρ(X)

What if the prices are in e: $1 = e0.94
Event P X2 X2

No accident 92% −$112 −e105
Minor accident 7.5% −$2 112 −e1 985
Major accident 0.5% −$2 112 −e1 985
ρ −$272 −e256

−$272 = −e256
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Coherent Measures of Risk

Convex Risk Measures

Weaker definition than coherent risk measures
1. Convexity:

ρ(t ·X + (1− t) · Y ) ≤ t · ρ(X) + (1− t) · ρ(Y )

2. Monotonicity:

If X � Y , then ρ(X) ≥ ρ(Y )

3. Translation equivariance: For a constant a:

ρ(X + a) = ρ(X) + a

4.
((((

((((
((

Positive homogeneity
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Coherent Measures of Risk

Additional Property: Law Invariance

Value of risk measure is independent of the names of the events

Consider a coin flip
Event P X Y

Heads 1/2 1 0
Tails 1/2 0 1

Require that ρ(X) = ρ(Y ); violated by some coherent risk
measures

Distortion risk measures: coherence & law invariance &
comonotonicity
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Coherent Measures of Risk

Simple Coherent Measures of Risk
I Expectation:

ρ(x) = E[X] =
∑
ω∈Ω

X(ω)P (ω)

1. Convexity: E[X] is linear
2. Monotonicity: E[X] ≥ E[Y ] if X � Y
3. Translation equivariance: E[X + a] = E[X] + a
4. Positive homogeneity: E[t ·X] = t · E[X] for t > 0

I Worst case:

ρ(X) = min[X] = min
ω∈Ω

X(ω)

1. Convexity: min[X] is convex
2. Monotonicity: min[X] ≥ min[Y ] if X � Y
3. Translation equivariance: min[X + a] = min[X] + a
4. Positive homogeneity: min[t ·X] = t · E[X] for t > 0
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Coherent Measures of Risk
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Coherent Measures of Risk

CV@R for Discrete Distributions

I Simple definition is not coherent

CV@Rα(X) = E
[
X
∣∣∣ X ≤ V@Rα(X)

]
I Violates convexity when distribution has atoms (discrete

distributions)

I Coherent definition of CV@R:

CV@Rα(X) = sup
t

{
t+

1

α
E[X − t]−

}
I t? = V@Rα(X) when the distribution is atom-less

I Definitions the same for continuous distributions
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Coherent Measures of Risk

Computing CV@R

I Discrete distributions: Solve a linear program

max
t,y

t+
1

α
p>y

s.t. y ≤ X − t,
y ≤ 0

I Continuous distributions: Closed form for many (Nadarajah,
Zhang, and Chan 2014; Andreev, Kanto, and Malo 2005)
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Coherent Measures of Risk

Car Insurance and CV@R

I X1 – no insurance
I X2 – high deductible insurance
I X3 – low deductible insurance

Event P X1 X2 X3

No accident 92% $0 −$112 −$322
Minor accident 7.5% −$2 500 −$2 112 −$422
Major accident 0.5% −$10 000 −$2 112 −$422
E −$238 −$272 −$330
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Coherent Measures of Risk

Car Insurance and CV@R

I X1 – no insurance
I X2 – high deductible insurance
I X3 – low deductible insurance

Event P X1 X2 X3

No accident 92% $0 −$112 −$322
Minor accident 7.5% −$2 500 −$2 112 −$422
Major accident 0.5% −$10 000 −$2 112 −$422
E −$238 −$272 −$330
V@R0.25 $0 −$112 −$322
CV@R0.25 −$950 −$752 −$354
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Coherent Measures of Risk

Car Insurance and CV@R

I X1 – no insurance
I X2 – high deductible insurance
I X3 – low deductible insurance

Event P X1 X2 X3

No accident 92% $0 −$112 −$322
Minor accident 7.5% −$2 500 −$2 112 −$422
Major accident 0.5% −$10 000 −$2 112 −$422
E −$238 −$272 −$330
V@R0.25 $0 −$112 −$322
CV@R0.25 −$950 −$752 −$354
V@R0.05 −$2 500 −$2 112 −$422
CV@R0.05 −$3 250 −$2 112 −$422
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Coherent Measures of Risk

Robust Representation of Coherent Risk Measures
I Important representation for analysis and optimization
I For any coherent risk measure ρ:

ρ(X) = min
ξ∈A

Eξ
[
X
]
= inf

ξ∈A
ξ>X

I A is a set of measures such that is:
1. convex
2. bounded
3. closed

I Proof: Double convex conjugate
I Convex conjugate:

ρ?(y) = sup
x
x>y − ρ(x)

I Fenchel–Moreau theorem:

ρ??(x) = ρ(x)
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Coherent Measures of Risk

Robust Set for CV@R

CV@Rα(X) = sup
t

{
t+

1

α
E[X − t]−

}
I Robust representation:

ρ(X) = inf
ξ∈A

Eξ
[
X
]

I Robust set for probability distribution P :

A =

{
ξ ≥ 0 | ξ ≤ 1

α
P, 1>ξ = 1

}
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Coherent Measures of Risk

Robust Set for CV@R

I Robust representation:

ρ(X) = min
ξ∈A

Eξ
[
X
]

A =

{
ξ ≥ 0 | ξ ≤ 1

α
P, 1>ξ = 1

}
I Random variable: X = [10, 5, 2]

I Probability distribution: p = [1/3, 1/3, 1/3]

I CV@R1/2(X) =

min
ξ≥0

10 ξ1 + 5 ξ2 + 2 ξ3

ξi ≤
1

α
pi =

1
1/2

1/3 =
2

3
ξ1 + ξ2 + ξ3 = 1
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Coherent Measures of Risk

Other Coherent Risk Measures

1. Combination of expectation and CV@R

2. Entropic risk measure

3. Coherent entropic risk measure (convex, incoherent)

4. Risk measures from utility functions

5. . . .
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Coherent Measures of Risk

Convex Combination of Expectation and CV@R

I CV@R ignores the mean return

I Risk-averse solutions bad in expectation

I Practical trade-off: Combine mean and risk

ρ(X) = c · E[X] + (1− c) · CV@Rα(X)
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Coherent Measures of Risk

Entropic Risk Measure

ρ(X) = −1/τ lnE
[
e−τ ·X

]
τ > 0

I Convex risk measure

I Incoherent (violates translation invariance)
I No robust representation
I Coherent entropic risk measure: (Föllmer and Knispel

2011)

ρ(X) = max
ξ≥0

{
Eξ[X] | KL(ξ | P ) ≤ c,1>ξ = 1

}
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Coherent Measures of Risk
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Coherent Measures of Risk

Risk Measure From Utility Function

I Concave utility function u(·)
I Construct a coherent risk measure from g?

I Direct construction:

ρ(X) = E[u(X)]

Not coherent or convex
I Optimized Certainty Equivalent (Ben-Tal and Teboulle

2007)
ρ(X) = sup

t
(t+ E[g(X − t)])
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Risk Measure From Utility Function
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Coherent Measures of Risk

Optimized Certainty Equivalent

ρ(X) = sup
t

(t+ E[g(X − t)])

I How much consume now given uncertain future

I Convex risk measure for any concave u
I Coherent risk measure for pos. homogeneous u

I Exponential u: OCE = entropic risk measure
I Piecewise linear u: OCE = CV@R
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Coherent Measures of Risk

Optimized Certainty Equivalent
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Coherent Measures of Risk

Recommended References

I Lectures on Stochastic Programming: Modeling and
Theory (Shapiro, Dentcheva, and Ruszczynski 2014)

I Stochastic Finance: An Introduction in Discrete
Time (Follmer and Schied 2011)

Risk-Averse Decision Making and Control



Coherent Measures of Risk

Remainder of Tutorial: Multistage Optimization

I How to apply risk measures when optimizing over multiple
time steps

I Results in machine learning and reinforcement learning

I Time or dynamic consistency in multiple time steps
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Coherent Measures of Risk

Schedule

9:00–9:20 Introduction to risk-averse modeling
9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break

9:50–10:30 Coherent Measures of Risk: Properties and methods
10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk

Risk-Averse Decision Making and Control



Risk Measures in Reinforcement Learning

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary
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Risk Measures in Reinforcement Learning

Please see the other slide deck
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Risk Measures in Reinforcement Learning

Schedule
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9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break

9:50–10:30 Coherent Measures of Risk: Properties and methods
10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk

Risk-Averse Decision Making and Control



Time consistency of in reinforcement learning

Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning

Summary
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Time consistency of in reinforcement learning

Schedule

9:00–9:20 Introduction to risk-averse modeling
9:20–9:40 Value at Risk and Average Value at Risk
9:40–9:50 Break

9:50–10:30 Coherent Measures of Risk: Properties and methods
10:30–11:00 Coffee break
11:00–12:30 Risk-averse reinforcement learning
12:30–12:40 Break
12:40–12:55 Time consistent measures of risk
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Time consistency of in reinforcement learning

Example: Driving Test Discount

Option 1: Plain Insurance

I Cost: $9.00

I No deductible
I Certain expected outcome:

E[X1] = −9.00

ρ(X1) = E[X1] = −9.00

Option 2: Custom
Insurance

I Take a safety exam
I Pass with probability 1/2

I OK [P = 2/3]: +$5.00
I Not [P = 2/3]: −$20.00

I Fail with probability 1/2

I OK [P = 2/3]: −$5.00
I Not [P = 2/3]: −$10.00

Risk measure: ρ = CV@R2/3

Risk-Averse Decision Making and Control
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Time consistency of in reinforcement learning

Risk Measure of Option 2

Take test

NOK −20

1/3
OK 5

1/3

OK 5
1/3

Pass

P
=

1/
2

NOK −10

1/3
OK −5

1/3

OK −5

1/3

Fa
il

P
=

1 /
2

Risk measure:
ρ(X2) = CV@R2/3(X2)

P X2

1/6 −5
1/6 −5
1/6 −10
1/6 5
1/6 5
1/6 −20
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Time consistency of in reinforcement learning

Risk Measure of Option 2

Take test
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1/3
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1/
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NOK −10

1/3
OK −5

1/3

OK −5

1/3

Fa
il

P
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1 /
2

Risk measure:
ρ(X2) = CV@R2/3(X2)

P X2

1/6 −5
1/6 −5
1/6 −10
1/6 5
1/6 5
1/6 −20

ρ(X2) =
−5− 5− 10− 20

4
=

= −10.0 < −9.0 = ρ(X1)
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Time consistency of in reinforcement learning

Risk Measure of Option 2

Take test

NOK −20

1/3
OK 5

1/3

OK 5
1/3

Pass

P
=

1/
2

NOK −10

1/3
OK −5

1/3

OK −5

1/3

Fa
il

P
=

1 /
2

Risk measure:
ρ(X2) = CV@R2/3(X2)

P X2

1/6 −5
1/6 −5
1/6 −10
1/6 5
1/6 5
1/6 −20

ρ(X2) < ρ(X1)

Prefer option 1
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Time consistency of in reinforcement learning

Optimal Solution of Subproblems
Recall we prefer option 1: ρ(X1) = −9

Pass test

NOK −20

1/3

OK 5

1/
3

OK 5

1/3

P 1/3 1/3 1/3

X2 −20 5 5

ρ(X2 | Pass) = −20 + 5

2
= −7.5

If pass, prefer option 2

Fail test

NOK −10

1/3

OK −5

1/
3

OK −5

1/3

P 1/3 1/3 1/3

X2 −10 −5 −5

ρ(X2 | Fail) = −15 + 5

2
= −7.5

If fail, prefer option 2

Time inconsistent behavior (Roorda, Schumacher, and Engwerda
2005; Iancu, Petrik, and Subramanian 2015)
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Time consistency of in reinforcement learning

Time Consistent Risk Measures

I Filtration (scenario tree) of rewards with T levels:

X1, X2, X3, . . . , XT

I Dynamic risk measure at time t:

ρt(Xt + · · ·+XT )

I Time consistent: if for all X,Y (also dynamic consistent)

ρt+1(Xt+ · · · ) ≥ ρt+1(Yt+ · · · )⇒ ρt(Xt+ · · · ) ≥ ρt(Yt+ · · · )

I Similar to subproblem optimality in programming optimality
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Time consistency of in reinforcement learning

Time Consistency via Iterated Risk Mappings

I Time consistent risk measures must be composed of
iterated risk mappings (Roorda, Schumacher, and
Engwerda 2005):

µ1, µ2, . . . , µt

I Dynamic risk measure:

ρt(Xt+ · · ·+XT ) = µt(Xt+ µt+1(Xt+1 + µt+2(xt+3 + · · · )))

I Each µt: a coherent risk measure applied on subtree of
filtration

I Markov risk measures for MDPs (Ruszczynski 2010)
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Time consistency of in reinforcement learning

Computing Time Consistent Risk Measure
Pass test

NOK −20

1/3

OK 5

1/
3

OK 5

1/3

ρ(X2 | Pass) = −20 + 5

2
= −7.5

Fail test

NOK −10

1/3

OK −5
1/

3
OK −5

1/3

ρ(X2 | Fail) = −15 + 5

2
= −7.5

Take test

Pass −7.5

1/2

Fail −7.5

1/2

ρ(X2) = ρ(−7.5) = −7.5 > −9

Consistently prefer option 1 throughout the execution
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Time consistency of in reinforcement learning

Approximating Inconsistent Risk Measures

I Time consistent risk measures are difficult to specify
I Approximate an inconsistent risk measure by a consistent one?
I Best lower bound: e.g. what is the best α1, α2 such that

CV@Rα1(CV@Rα2(X)) ≤ CV@Rα(X) for all X

I Best upper bound: e.g. what is the best α1, α2 such that

CV@Rα1(CV@Rα2(X)) ≥ CV@Rα(X) for all X

(Iancu, Petrik, and Subramanian 2015)
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Time consistency of in reinforcement learning

Best Time Consistent Bounds
I Compare robust sets of consistent and inconsistent measures
I Main insight: need to compare down-monotone closures of

robust sets

Risk-Averse Decision Making and Control



Time consistency of in reinforcement learning

Time Consistent Bounds: Main Results

I Lower consistent bound:
I Uniformly tightest bound can be constructed in polynomial

time
I Method: rectangularization

I Upper consistent bound:
I NP hard to even evaluate how tight the approximation is
I Approximation can be tighter than the lower bound

Risk-Averse Decision Making and Control



Time consistency of in reinforcement learning

Planning with Time Consistent Risk Measures

I Stochastic dual dynamic programming (Shapiro 2012)
I Applied in reinforcement learning (Petrik and Subramanian

2012)
I Only entropic dynamically consistent risk measures are law

invariant (Kupper and Schachermayer 2006)
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Outline

Introduction to Risk Averse Modeling

(Average) Value at Risk

Coherent Measures of Risk

Risk Measures in Reinforcement Learning

Time consistency of in reinforcement learning
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Risk Measures: Many Other Topics

1. Elicitation of risk measures

2. Estimation of risk measure from samples

3. Relationship to acceptance sets

4. Relationship to robust optimization

Risk-Averse Decision Making and Control



Summary

Take Home Messages

I Coherent risk measures are a convenient and established risk
aversion framework

I Computations with coherent risk measure are more efficient
than with utility functions

I Risk measures (V@R,CV@R) are more intuitive than utility
functions

I Time consistency is important in dynamic settings, but can be
difficult to achieve (open research problems)

I Risk measures are making inroads in reinforcement learning
and artificial intelligence
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