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Abstract

Robust MDPs (RMDPs) can be used to compute policies with provable worst-
case guarantees in reinforcement learning. The quality and robustness of an
RMDP solution are determined by the ambiguity set—the set of plausible transition
probabilities—which is usually constructed as a multi-dimensional confidence
region. Existing methods construct ambiguity sets as confidence regions using
concentration inequalities which leads to overly conservative solutions. This paper
proposes a new paradigm that can achieve better solutions with the same robustness
guarantees without using confidence regions as ambiguity sets. To incorporate
prior knowledge, our algorithms optimize the size and position of ambiguity sets
using Bayesian inference. Our theoretical analysis shows the safety of the proposed
method, and the empirical results demonstrate its practical promise.

1 Introduction

Markov decision processes (MDPs) provide a versatile framework for modeling reinforcement
learning problems [4, 33, 38]. However, they assume that transition probabilities and rewards
are known exactly which is rarely the case. Limited data sets, modeling errors, value function
approximation, and noisy data are common reasons for errors in transition probabilities [16, 30, 45].
This results in policies that are brittle and fail when implemented. This is particularly true in the case
of batch reinforcement learning [18, 20, 23, 32, 42].

A promising framework for computing robust policies is based on Robust MDPs (RMDPs). RMDPs
relax the need for precisely known transition probabilities. Instead, transition probabilities can
take on any value from a so-called ambiguity set which represents a set of plausible transition
probabilities [9, 14, 24, 29, 32, 40, 46, 47]. RMDPs are also reminiscent of dynamic zero-sum games:
the decision maker chooses the best actions, while the adversarial nature chooses the worst transition
probabilities from the ambiguity set.

The practical utility of using RMDPs has been hindered by the lack of good ways of constructing ambi-
guity sets that lead to solutions that are robust without being too conservative. The standard approach
to constructing ambiguity sets from concentration inequalities [1, 32, 42, 44] leads to theoretical
guarantees but provides solutions that hopelessly conservative. Many problem-specific methods have
been proposed too, but they are hard to use and typically lack finite-sample guarantees [3, 5, 16, 28].

The main contribution of this work is to introduce a new method for constructing ambiguity sets that
are both significantly less conservative than existing ones [21, 32, 42] and also provide strong finite-
sample guarantees. Similarly to some prior work on robust reinforcement learning and optimization,
we use Bayesian assumptions to take advantage of domain knowledge which is often available [7,
8, 13, 47]. Our main innovation is to realize that the natural approach to building ambiguity sets
as confidence intervals is unnecessarily conservative. Surprisingly, in the Bayesian setting, using a
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95% confidence region for the transition probabilities is unnecessarily conservative to achieve 95%
confidence in the robustness of the solution. We also derive new L; concentration inequalities of
possible independent interest.

The remainder of the paper is organized as follows. Section 2 formally describes the framework and
goals of the paper. Section 3 describes our main contribution, RSVF, a new method for constructing
tight ambiguity sets from Bayesian models that are adapted to the optimal policy. We provide
theoretical justification for the robustness of RSVE, but detailed theoretical analysis of its performance
guarantees is beyond the scope of this work. Then, Section 4 overviews related work and outlines
methods that build ambiguity sets as frequentist confidence regions or Bayesian credible sets. Finally,
Section 5 presents empirical results on several problem domains.

2 Problem Statement: Data-driven RMDPs

This section formalizes our goals and reviews relevant results for robust Markov decision pro-
cesses (RMDPs). Throughout the paper, we use the symbol A® to denote the probability simplex in
Rf_. The symbols 1 and 0 denote vectors of all ones and zeros, respectively, of an appropriate size.
The symbol I represents the identity matrix.

2.1 Safe Return Estimate: VaR

The underlying reinforcement learning problem is a Markov decision process with states & =
{1,...,S} and actions A = {1,..., A}. The rewards r : § x A — R are known but the true
transition probabilities P* : 8§ x A — AS are unknown. The transition probability vector for a state
s and an action a is denoted by py ,. As this is a baich reinforcement learning setting, a fixed dataset
D of transition samples is provided: D = (s; € 8,a; € A, s, € 8);=1,...,m. The only assumption
about D is that the state s’ in (s, a, s") € 8 is distributed according to the true transition probabilities
s' ~ P*(s,a, ), no assumptions are made on the sampling policy. Note that in the Bayesian approach,
P~ is arandom variable and we assume to have a prior distribution available.

The objective is to maximize the standard ~y-discounted infinite horizon return [33]. Because this
paper analyzes the impact of using different transition probabilities, we use a subscript to indicate
which ones are used. The optimal value function for some transition probabilities P is, therefore,
denoted as v} : § — R, and the value function for a deterministic policy m : § — A is denoted as v%.
The set of all deterministic stationary policies is denoted by II. The total return p(, P) of a policy 7
under transition probabilities P is:
p(ﬂ', P) = p;)rU;;’
where py is the initial distribution.

Ideally, we could compute a policy 7 : § — A that maximizes the return p(7, P*), but P* is
unknown. Ignoring the uncertainty in P* completely leads to brittle policies. Instead, a common
objective in robust reinforcement learning is to maximize a plausible lower-bound on the return.
Having a safe return estimate is very important since it can inform the stakeholder that the policy
may not be good enough when deployed. The objective of computing a policy 7 that maximizes a
high-confidence lower bound on the return can be expressed as [8, 21, 31, 42]:

max V@RS, [p(r, P*)], (1)

where V@GR’ is the popular value-at-risk measure at a risk level 6 [35]. This objective is also
sometimes known as percentile optimization [8]. It is important to note that the risk metric is applied
over possible values of the uncertain parameter and not over the distribution of returns. For example,
if VQR%%°[p(7r, P*)] = —1 then for 5% of uncertain transition probabilities P*, the return is —1 or
smaller.

Because solving the optimization problem in (1) is NP-hard [8], we instead maximize a lower bound
p(m). We call this lower bound a safe return estimate and it is defined as follows.

Definition 2.1 (Safe Return Estimate). The estimate p : II — R of return is called safe for a policy
7 with probability 1 — § if 5(7) < VA@R%. [p(m, P*)], or in other words if it satisfies:

Pp- () < plm, P*)
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Recall that under Bayesian assumptions, P* is a random variable and the guarantees are conditional
on the dataset D. This is different from the frequentist approach, in which the random variable
is D and the guarantees are conditional on P*. The relative merits of Bayesian versus frequentist
approaches to robust optimization have been discussed in earlier work [8, 47], but we emphasize
that each approach presents a different set of advantages. An insightful discussion of the differences
between the two approaches can be found, for example, in Sections 5.2.2 and 6.1.1 of Murphy (2012).

The following example will be used throughout the paper to demonstrate the proposed methods and
visualize simple ambiguity sets.

Example 2.1. Consider an MDP with 3 states: s1, s2, s3 and a single action a;. Assume that the true,
but unknown, transition probability is P*(s1, a1, ) = [0.3,0.2,0.5]. The known prior distribution
over pj, ,, is Dirichlet with concentration parameters o = (1,1, 1). The dataset D is comprised of 3
occurrences of transitions (s1, al, 51) 2 of transitions (s1, a1, s2), and 5 of transitions (s1, a1, s3).
The posterior distribution over p;_,, is also Dirichlet with & = (4, 3, 6). Note that this is a probability
distribution over transition probablhty distributions. Fig. 1 deplcts the posterior distribution projected
onto the probability simplex along with a 90% confidence region centered on the posterior mean.

2.2 Robust MDPs

Robust Markov Decision Processes (RMDPs) are a convenient model and tractable model that
generalizes MDPs. We will use RMDPs to maximize a tractable lower bound on V@R objective in
(1) and compute a safe return estimate. Our RMDP model has the same states 8, actions A, rewards
7s,q as the MDP. The transition probabilities for each state s and action a, denoted as p; o € AS, are
assumed chosen adversarialy from an ambiguity set P, ,. We use P to refer cumulatively to P , for
all states s and actions a.

We restrict our attention to sa-rectangular ambiguity sets, which allow the adversarial nature to
choose the worst transition probability independently for each state and action [22, 45]. Limitations
of rectangular ambiguity sets are known well [12, 25, 43] but they represent a simple, tractable, and
practical model. A convenient way of defining ambiguity sets is to use a norm-distance from a given
nominal transition probability D, 4:

Pso=1{peA’: <tsa} )
for a given ¢ , > 0 and a nominal point p, ,. We focus on ambiguity sets defined by the L; norm
because they give rise to RMDPs that can be solved very efficiently [15].

RMDPs have properties that are similar to regular MDPs (see, for example, [2, 19, 22, 28, 45]). The

robust Bellman operator 7' for an ambiguity set P for a state s computes the best action with respect
to the worst-case realization of the transition probabilities:

Tpv)(s) := max min (req+7-p'v 3

(Tpv)(s) aeﬁpeys’a(s,a vp ) 3)
The symbol f;{ denotes a robust Bellman update for a given stationary policy 7. The optimal robust
value function 9*, and the robust value function 9™ for a policy 7 are unique and must, similarly
to MDPs, satisfy 0* = Tp9* and 9™ = T50". In general, we use a hat to denote quantities in the

RMDP and omit it for the MDP. When the ambiguity set P is not obvious from the context, we use it
as a subscript 97,. The robust return p is defined as [16]:

p(m, P) = mln p(m, P) = plof |

where py € A is the initial distribution. In the remainder of the paper, we describe methods that
construct P from D in order to guarantee that / is a tight lower bound on V@R of the returns.

3 Optimized Bayesian Ambiguity Sets

In this section, we describe the new algorithm for constructing Bayesian ambiguity sets that can
compute less-conservative lower bounds on the return. RSVF (robustification with sensible value
functions) is a Bayesian method that uses samples from the posterior distribution over P* to construct
tight ambiguity sets.
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Before describing the algorithm, we use the setting of Example 2.1 to motivate our approach. To
minimize distractions by technicalities, assume that the goal is to compute the return for a single
time step starting from state s;. Assume also that the value function v = (1,0, 0) is known, all
rewards from s; are 0, and v = 1. Recall that our goal is to construct a safe return estimate p(7) of
V@R%! [p(r, P*)] at the 90% level. When the value function is known, it is possible to construct the
optimal ambiguity set P* such that p(r) = min,ep. p'v = VQR%S! [p(, P*)] as:

P — {p €A pTy> V@R%}[p(w,P*)]} .

It can be shown readily that this ambiguity set is optimal in the sense that any set for which () is
exact must be a subset of P* [13]. Fig. 2 depicts the optimal ambiguity set along with the arrow that
indicates the direction along which v increases.

The optimal ambiguity set described above cannot be used directly, unfortunately, because the value
function is unknown. It would be tempting to construct the ambiguity set as the intersection of
optimal sets for all possible value functions; a polyhedral approximation of this set is shown in Fig. 2
using a blue color. Unfortunately, this approach is not (usually) correct and will not lead to a safe
return estimate. This can be shown from the fact that support functions to convex sets are convex and
V@R is not a convex (concave) function [6, 34]; see Gupta (2015) for a more detailed discussion.

Since it is not possible, in general, to simply consider the intersection of optimal ambiguity sets for
all possible value functions, we approximate the optimal ambiguity set for a few reasonable value
functions. For this purpose, we use a set Ksﬂ(v) defined as follows:

Ka(v) = {p € A% : pTv < VGRS, [(pﬁ,a)Tv]} ,

where ¢ = 1 — 0/(SA). The bottom dashed set in Fig. 3 depicts this set X for v = (0,0, 1)
in Example 2.1. The intuition behind this construction is as follows. If any ambiguity set P, ,
intersects K ,(0F) for each state s, a then the value function 07 is safe: maxpex, , (v) plo <
V@R%* [(p%.o)Tv]. See Lemma B.2 for the formal statement.

The set 5{570,(11) is sufficient, when the value function is known, but we need to generalize the
approach to unknown value functions. The set £ ,(V) provides such a guarantee for a set of possible

value functions (POV) V. Its center is chosen to minimize its size while intersecting K ,(v) for each
v in V and is constructed as follows.

LoaV)={pe A’ Ip—0saM)1 < ¥sa(V)}

Vs.a(V) = min f(p), 0s.0(V) € arg min f(p),  f(p) =max min g —plh

“4)

The optimization in (4) can be represented and solved as a linear program. Fig. 3 shows the set £
in black solid color. It is the smallest L;-constrained set that intersects the two X sets for value
functions v; = (0,0,1) and vy = (2,1, 0) in Example 2.1.

We are now ready to describe RSVF, which is outlined in Algorithm 1. RSVF takes an optimistic
approach to approximating the optimal ambiguity set. It starts with a small set of potential optimal
value functions (POV) and constructs an ambiguity set that is safe for these value functions. It
keeps increasing the POV set until 9* is in the set and the policy is safe. To simplify presentation,



Algorithm 1: RSVF: Adapted Ambiguity Sets

Input: Confidence 1 — ¢ and posterior Pp+[- | D]
Output: Policy 7 and lower bound p(7)
1 k+ 0

2 Pick some initial value function 9g;

3 Initialize POV: Vo < 0 ;

4 repeat

5 Augment POV: Vi1 «+ Vi U{vi};
6

7

8

9

For all s, a update P! <= L o(Vit1) 5
Solve Op1 <= 03, and Ty = 75,
k+—k+1;
until safe for all s,a: K o(0x) N fP’;a # ;
return (7, pd %)

—
=

Algorithm 1 is not guaranteed to terminate in finite time; the actual implementation switches to BCI
described in Section 4.2 after 100 iterations, which guarantees its termination.

The following theorem states that Algorithm 1 produces a safe estimate of the true return.
Theorem 3.1. Suppose that Algorithm 1 terminates with a policy 7y and a value function vy, in the

iteration k. Then, the return estimate p(7) = pl oy, is safe: Pp« |ploy < pOTv;’i ZD} >1-4.

Before discussing the proof of Theorem 3.1, it is important to mention its limitations. This result
shows only that the return estimate p is safe; it does not show that it is good. There are, of course,
naive safe estimates such as p(m) = (1 — )~ ming , 75 .. Since RSVF tightly approximates the
optimal ambiguity sets, we expect it to perform significantly better. The theoretical analysis of this of
the approximation error of p is beyond the scope of this work and we present empirical evidence in
Section 5 instead.

All proofs can be found in Appendix B. The proof is technical but conceptually simple. It is based
on two main properties. The first one is the construction of optimal ambiguity sets for the known
value function as outlined above. The second is the fact that the ambiguity set needs to be robust
with only with respect to the robust value function ¢ and not the optimal value function v*. This is
subtle, but crucial since v is a constant while v* is a random variable in the Bayesian setting. The
RSVF approach, therefore, does not work when frequentist guarantees are required. Confidence
regions, described in Section 4, are designed for situations when robustness is required with respect
to a random variable, and are therefore overly conservative in our setting. See Appendix E for more
in-depth discussion.

4 Ambiguity Sets as Confidence Regions

In this section, we describe the standard approach to constructing ambiguity sets as multidimensional
confidence regions and propose its extension to the Bayesian setting. Confidence regions derived
from concentration inequalities have been used previously to compute bounds on the true return in
off-policy policy evaluation [41, 42]. These methods, unfortunately, do not readily generalize to the
policy optimization setting, which we target. Other work has focused on reducing variance rather than
on high-probability bounds [18, 23, 26]. Methods for exploration in reinforcement learning, such as
MBIE or UCRL2, also construct ambiguity sets using concentration inequalities [10, 17, 37, 37, 39]
and compute optimistic (upper) bounds to guide exploration.

4.1 Distribution-free (Frequentist) Confidence Interval

Distribution-free confidence regions are used widely in reinforcement learning to achieve robust-
ness [32, 42] and to guide exploration [36, 39]. The confidence region is constructed around the
mean transition probability by combining the Hoeffding inequality with the union bound [32, 44].



We refer to this set as a Hoeffding confidence region and define it as follows for each s and a:

2 SA28 }

log

Tfa = {p €A®: lp _ﬁs,a||1 < Ts.a 5

where p, , is the mean transition probability computed from D and n; , is the number of transitions
in D originating from state s and an action a.

Theorem 4.1. The robust value function dpu for the ambiguity set PH satisfies:
Py [05n < vps, Vm eIl | P >1-96. %)
In addition, if 7, is the optimal solution to the RMDP, then pg@} u 1s a safe return estimate of Ty .

To better understand the limitations of using concentration inequalities, we compare with new, and
significantly tighter, frequentist ambiguity sets. The size of P¥ grows as a square root of the number
of states because of the 2° term. This means that the size of D must scale about quadratically with the
number of states to achieve the same confidence. Under some restrictive assumptions, the ambiguity
set can be shown to be:

_ 2 S2A
?é\,{z:{peAS 2 lp = Psalli < log} )
Ns,a 0

This auxiliary result is proved in Appendix C.1. We emphasize that the aim of this bound is
to understand the limitations of distribution free bounds, and we use it even when the necessary
assumptions are violated.

4.2 Bayesian Credible Region (BCI)

We now describe how to construct ambiguity sets from Bayesian credible (or confidence) regions. To
the best of our knowledge, this approach has not been studied explicitly. The construction starts with
a (hierarchical) Bayesian model that can be used to sample from the posterior probability of P* given
data D. The implementation of the Bayesian model is irrelevant as long as it generates posterior
samples efficiently. For example, one may use a Dirichlet posterior, or use MCMC sampling libraries
like JAGS, Stan, or others [11].

The posterior distribution is used to optimize for the smallest ambiguity set around the mean transition
probability. Smaller sets, for a fixed nominal point, are likely to result in less conservative robust
estimates. The BCI ambiguity set is defined as follows:

(Pfa = {p € As : ”p_pS-,a”l < 7/’51,3,(1}, ps,a = ]EP*[pg,a | D] .

There is no closed-form expression for the Bayesian ambiguity set size. It must be computed by
solving the following optimization problem for each state s and action a:

B . . * _ 1
oo = min {0 Bl =Pl > 91 9] < g5 -

The nominal point p; , is fixed (not optimized) to preserve tractability. This optimization problem can
be solved by the Sample Average Approximation (SAA) algorithm [35]. Algorithm 2, in the appendix,
summarizes the sort-based method. The main idea is to sample from the posterior distribution and
then choose the minimal size v, , that satisfies the constraint. We assume that it is possible to draw
enough samples from P* that the sampling error becomes negligible. Because the finite-sample
analysis of SAA is simple but tedious, we omit it.

Theorem 4.2. The robust value function dps for the ambiguity set PP satisfies:
Pp« [0 <vp., VT eIl | D] >1-4.
In addition, if 7}, is the optimal solution to the RMDP, then pgﬁ; 5 is a safe return estimate of T}, 5.

The proof is provided in Appendix B. Similar to other results, this theorem only proves that the
constructed lower bound on the return is safe. It does not address the tightness of the bound.
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S Empirical Evaluation

In this section, we empirically evaluate the safe estimates computed using Hoeffding, BCI, and
RSVF ambiguity sets. We start by assuming a true model and generate simulated datasets from it.
Each dataset is then used to construct an ambiguity set and a safe estimate of policy return. The
performance of the methods is measured using the average of the absolute errors of the estimates
compared with the true returns of the optimal policies. All of our experiments use a 95% confidence
for the safety of the estimates.

We compare ambiguity sets constructed using BCI, RSVEF, with the Hoeffding sets. To reduce the
conservativeness of Hoeffding sets when transition probabilities are sparse, we use a modification
inspired by the Good-Turing bounds [39]. That is that any transitions from s, a to s’ are impossible
if they are not in D. We also compare with the “Hoeffding Monotone” formulation P! even when
there is no guarantee that the value function is really monotone. Finally, we compare the results with
the “Mean Transition” which solves the expected model p; , with no safety guarantees.

Next in Section 5.1, we compare the methods in a simplified setting in which we consider the problem
of estimating the value of a single state from a Bellman update. Then, Section 5.2, evaluates the
approach on an MDP with an informative prior.

We do not evaluate the computational complexity of the methods since they target problems con-
strained by data and not computation. The Bayesian methods are generally more computationally
demanding but the scale depends significantly on the type of the prior model used. All Bayesian
methods draw 1, 000 samples from the posterior for each state and action.

5.1 Bellman Update

In this section, we consider a transition from a single state s and action ag to 5 states sy, ..., S5. The
value function for the states s1, .. ., s5 is fixed to be [1, 2, 3,4, 5]. RSVF is run for a single iteration
with the given value function. The single iteration of RSVF in this simplistic setting helps to quantify
the possible benefit of using RSVF-style methods over BCI. The ground truth is generated from the
corresponding prior for each one of the problems.

Uninformative Dirichlet Priors This setting considers a uniform Dirichlet distribution with o =
[1,1,1,1,1] as the prior. This prior provides little information. Figure 4 compares the computed
robust return errors. The value £ represents the regret of predicted returns, which is the absolute
difference between the true optimal value and the robust estimate: £ = |p(7%., P*) — p(7*)|. Here,
p is the robust estimate and 7* is the optimal robust solution. The smaller the value, the tighter and
less conservative the safe estimate is. The number of samples is the size of dataset D. All results are
computed by averaging over 200 simulated datasets of the given size generated from the true P*. The
results show that BCI improves on both types of Hoeffding bounds and RSVF further improves on
BCI. The mean estimate provides the tightest bounds, but it does not provide any meaningful safety
guarantees.
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Informative Gaussian Priors To evaluate the effect of using an informative prior, we use a problem
inspired by inventory optimization. The states s1, ..., s5 represent inventory levels. The inventory
level corresponds to the state index (1 in the state s1) except that the inventory in the current state
50 1s 5. The demand is assumed to be Normally distributed with an unknown mean p and a known
standard deviation 0 = 1. The prior over p is Normal with the mean o = 3 and, therefore, the
posterior over g is also Normal. The current action assumes that no product is ordered and, therefore,
only the demand is subtracted from sg.

5.2 Full MDP

In this section, we evaluate the methods using MDPs with relatively small state-spaces. They can be
used with certain types of value function approximation, like aggregation [30], but we evaluate them
only on tabular problems to prevent approximation errors from skewing the results. To prevent the
sampling policy from influencing the results, each dataset D has the same number of samples from
each state.

Uninformative Prior We first use the standard RiverSwim domain for the evaluation [36]. The
methods are evaluated identically to the Bellman update above. That is, we generate synthetic datasets
from the ground truth and then compare the expected regret of the robust estimate with respect to the
true return of the optimal policy for the ground truth. As the prior distribution, we use the uniform
Dirichlet distribution over all states. Figure 6 shows the expected robust regret over 100 repetitions.
The x-axis represents the number of samples in D for each state. It is apparent that BCI improves
only slightly on the Hoeffding sets since the prior is not informative. RSVF, on the other hand, shows
a significant improvement over BCIL. All robust methods have safety violations of 0% indicating that
even RSVF is unnecessarily conservative here.

Informative Prior Next, we evaluate RSVF on the MDP model of a simple exponential population
model [43]. Robustness plays an important role in ecological models because they are often complex,
stochastic, and data collection is expensive. Yet, it is important that the decisions are robust due to
their long term impacts. Figure 7 shows the average regret of safe predictions. BCI can leverage the
prior information to compute tighter bounds, but RSVF further improves on BCI. The rate of safety
violations is again 0% for all robust methods.

6 Summary and Conclusion

This paper proposes new Bayesian algorithms for constructing ambiguity sets in RMDPs, improving
over standard distribution-free methods. BCI makes it possible to flexibly incorporate prior domains
knowledge and is easy to generalize to other shapes of ambiguity sets (like L) without having
to prove new concentration inequalities. Finally, RSVF improves on BCI by constructing tighter
ambiguity sets that are not confidence regions. Our experimental results and theoretical analysis
indicate that the new ambiguity sets provide much tighter safe return estimates. The only drawbacks
of the Bayesian methods are that they need priors and may increase the computational complexity.
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A Technical Results

The following proposition shows that the guarantee of a safe estimate on the return is achieved when
the true transition model is contained in the ambiguity set.

Lemma A.1. Suppose that an ambiguity set P satisfies Pp [p;a € Ps.al P*} >1-0/(SA) for
each state s and action a. Then:

Py [05 < vps, VreIl| P*]>1-4.

Proof. We omit P and P* from the notation in the proof since they are fixed. From Lemma B.1, we
have that 9™ < v™ if

T7o™ <T79™ .
That is, for each state s and action a:

min p'o" < (p} )07
PEPs a ’

Using the identity above, the probability that the robust value function is a lower bound can be
bounded as follows:

Py [0F < vp, Y7 € I | P*] =Py { min p T < (pt )0, Vr el s€8,ac A| P*| >

PEPs ’
> Py [(pha) 0" < (ph,) 07, Vr €, s €8,a€ A| P* € P, P*|Pp [P* € P | P*]+
+Pp [P* ¢ P | P*| > 1Py [P* € P| P*| 4+ 0Py [P* ¢ P| P*] >

>Pp [P eP|PY].

Now, from the union bound over all states and actions, we get:

Py [67 > 0" |PY| <Po [P* ¢ P| P <D Y P [pf, ¢ Poa | P] <6,
s€8 acA

which completes the proof. O

The next proposition is the Bayesian equivalent of Lemma A.1.

Lemma A.2. Suppose that an ambiguity set P satisfies Pp+ [p%, € Psq | D] > 1 —35/(SA) for
each state s and action a. Then: /

PP*[@SF)SU?D*,V’/TGH|‘D]Z].—(S

Proof. We omit P and P* from the notation in the proof since they are fixed. From Lemma B.1, we
have that 9™ < v™ if

70" <T79™ .
That is, for each state s and action a:

min p'o" < (pf ) 0"
PEPs.a ’

Using the identity above, the probability that the robust value function is a lower bound can be
bounded as follows:

Pps [05 < vp, Vr € I | D] = Pps { Hilpin p T < (pt )0, Vrell,s€8,ac A|D| >
PEPs.a ’
> Ppe [(p5,)T07 < (p5o)T07, Vrell,s € 8,a € A| P* € P, D|Pp. [P* € P | D]+
+Pp« [P* ¢ P| D] > 1Pp« [P* € P| D]+ 0Pp« [P* ¢ P | D] >
>Pp. [P*€P|D].
Now, from the union bound over all states and actions, we get:
Pps [67 > 0| D] <Pp« [P* ¢ P D] <> > Ppu [ph, ¢ Pea| D] <3,
s€8 acA

which completes the proof. O
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B Technical Proofs

B.1 Proof of Theorem 3.1

Before presenting the proof of the theorem, we need to show some auxiliary results.

The following lemma shows that when the robust Bellman update lower-bounds the true Bellman
update then the value function estimate is safe.

Lemma B.1. Consider a policy T, its robust value function ©™, and true value function v™ such that
0" =T70™ and v™ = T™v™. Then, 0™ < v™ element-wise whenever T™ 0™ < T7™0™. That is, if
mingep, , p' 0" < pl 07 for each state s and action a = (s) then 0™ < v™.

Lemma B.1 implies readily that the inequality above is satisfied when p , € P 4.

Proof. Using the assumption T o™ < T797™, and from 9™ = T™%™ and v™ = T™v™, we get by
algebraic manipulation:

T — 0" =T70" — THo™ < T™0" — T™0™ = yPr (6™ — v™) .

Here, Py is the transition probability matrix for the policy 7. Subtracting P, (0™ — v™) from the
above inequality gives:
(I—~P) (0" —2v™) <0,

where I is the identity matrix. Because the matrix (I — P, )~ is monotone, as can be seen from its
Neumann series, we get:
i —0" < (I—yPy)'0=0,

which proves the result. O

The next lemma formalizes the safety-sufficiency of X. Note that the rewards r; , are not a factor in
this lemma because they are certain and cancel out.

Lemma B.2. Consider any ambiguity set P, , and a value function v. Then minyep, , plo <
(%) "o with probability 1 — §/(SA) if and only if Ps o N Ky o (v) # 0.

Proof. To show the “if” direction, let p € P, , N K;s4(v). Such p exists because the in-
tersection is nonempty. Then, minpep, , p'v < plv < V@RS, [(p;a)Tv}. By definition,
V@RS, [(p%a)Tv] < (p2,)Tv with probability 1 — §/(SA).

To show the “only if”” direction, suppose that p is a minimizer in minye», , p'v. The premise

translates to Pp«[pTv < (p},)Tv | D] > 1 —6/(SA). Therefore, V@R%* [(p%a)Tv] = pTvand
p € Ps.o N K, and the intersection is non-empty. O

The following lemma formalizes the properties of L 4.

Lemma B.3. For any finite set V of value functions, the following inequality holds for all v € V
simultaneously:

Pp« min To < (p* Yo
P LELM(V)ID < (Pia)

5
Dl >1— — .
]— SA

Proof. Assume an arbitrary v € V and let ¢} € arg mingex, , (1)|lq — 0s,0(V)||1 using the notation
of (4). From the definition of 6, ., (V) in (4), the value g, is in the ambiguity set £ (V). Given that
also ¢, € K, 4(v), Lemma B.2 shows that:

]
Pp- i To<(p: )0 | Dl >1- —
r Legﬁ?mp v Pia)w ] - sAY
because g, € L 4(v) UK o(v) # 0. This completes the proof since v is any from V. O

We are now ready to prove the theorem.
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Proof. Recall that Algorithm 1 terminates only if X o (05) N ?’;a # () for each state s and action a.
Then, according to Lemma B.2, we get with probability 1 — /(S A):

min p Oy < (pe a)TA
pePk

Vg

for any fixed state s and action a. By the union bound, the inequality holds simultaneously for all
states and actions with probability 1 — §. That means that with probability 1 — § we can derive the
following using basic algebra:

m1npvk<(psa) O Vse8,ac A
pePk

Ts.a+ mlkn P o < Tsq+ (pk a)Tﬁk Vse8,aeA
pEPE ’ ’

Tﬂ- ’Uk < Tp*vk

Note that vy, is the robust value function for the policy 7y, since 0 = @;k and 7, = ﬁa‘ak. Lemma B.1
finally implies that 0, < vzt with probability 1 — 4. O

B.2 Proof of Theorem 4.1

Proof. The first part of the statement follows directly from Lemma A.1 and Lemma C.1. The second
part of the statement follows from the fact that the lower bound property holds uniformly across all
policies. O

B.3 Proof of Theorem 4.2

Proof. The first part of the statement follows directly from Lemma A.2 and the definition of ¥Z,
The second part of the statement follows from the fact that the lower bound property holds umformly
across all policies. U

C L, Concentration Inequality Bounds

In this section, we describe a new elementary proof of a bound on the L; distance between the
estimated transition probability distribution and the true one. It simplifies the proofs of Weissman
et al. (2003) but also leads to coarser bounds. We include the proof here in order to derive the tighter
bound in Appendix C.1. Note that in the frequentist setting the ambiguity set P is a random variable
that is a function of the dataset D.

Recall that our ambiguity sets are defined as L, balls around the expected transition probabilities
ﬁs,a:

Psa={p€ A5 lp = Ps,allr < 1/)s,a} . (6)
Lemma A.1 implies that the size of the L; balls must be chosen as follows:
PllIp(s,a) = p*(s,a)lly < sa] 2 1-0/(SA). )

We can now express the necessary size 1, , of the ambiguity sets in terms of n, ,, which denotes the
number of samples in D that originate with a state s and an action a.

Lemma C.1 (L, Error bound). Suppose that ps_,, is the empirical estimate of the transition probability
obtained from n, o, samples for each s € 8 and a € A. Then:

_ . ’(/Jf alls,a
P [Hps.,a - ps,a”l > ¢S,a] < (QS - 2) €xp <’2 .

Therefore, for any § € [0, 1]:

2 SA(25 -2
P [p bl < % 1og(5)] <1-5/(54).

s,a
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Proof. To shorten the notation, we omit the indexes s, a throughout the proof; for example p is used
instead of the full p, ,. First, express the L; distance between two distributions p and p* in terms of

an optimization problem. Let 1o € R® be the indicator vector for some subset Q C 8. Then:
16— p*lly = max {=T(p— ") : 2] < 1} =
= max {15(p—p*) = (1= 10)"(p—p*) : 0< Q] <m}
@ T/= *
=2max {1 — :0< |9 <my .
max {15(p —p*) 9] < m}

Here, (a) holds because 17 (p — p*) = 0. Using the expression above, the target probability can be
bounded as follows:

P(Ip - pls > 4] =P [219116%55{15(1713*) L 0<]0 <m) > w]

(a)
< 101~ 2) max {P [ 13- > §] s 0 <19l <}

4 (1Q] — 2) exp (-¢Z”> = (25 —2)exp (-Z[’;”) :

The inequality (a) follows from union bound and the inequality (b) follows from the Hoeffding’s
inequality since 10,p € [0, 1] for any Q with the mean of 1/p*. O

C.1 Ambiguity Sets for Monotone Value Functions

A significant limitation of the result in Lemma C.1 is that the ) depends linearly on the number of
states. We now explore an assumption that can alleviate this important drawback when the value
functions are guaranteed to be monotone. In particular, the monotonicity assumption states that the
value functions v of the optimal robust policy must be non-decreasing in some arbitrary order which
must be known ahead of time. Assume, therefore, without loss of generality that:

V2V > 2> Uy, 3
where v; is the value of state 7.

Admittedly, monotonicity is a restrictive assumption, but we explore it in order to understand the
greatest possible gains from tightening the known concentration inequalities. Yet, monotonicity
of this type occurs in some problems, such as inventory management in which the value does not
decrease with increasing inventory levels or medical problems in which the value does not increase
with a deteriorating health state.

It is important to note that any MDP algorithm that relies on the assumption (8) needs to also
enforce it. That means, the algorithm must prevent generating value functions that violate the
monotonicity assumption. Practically, this could be achieved by representing the value function as a
linear combination of monotone features.

The bound Lemma C.1 is large because of the term 2° which derives from the use of a union bound.
The union bound is used because the L; norm can be represented as a maximum over an exponentially
many linear functions:

-
[ElR %lg%(( Q J\Q) x

Here, the set J = 2° represents all indexes of x and 1¢ is a vector that is one for all elements of Q
and zero otherwise. We now show that under the monotonicity property (8), the L; norm can be
represented as a maximum over a linear (in states) number of linear functions. In particular, the
worst-case optimization problem of the nature:

min va
p
st (la—150) (p—p) <@, ¥QCJ ©)
1'p=1,
p=>0
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can be replaced by the following optimization problem:

min v'p
P
s.t. (1k:4..n - 11.~-(/€71))T(p - ﬁ) <¢, Vk=0,..., (n + 1) (10)
1'p=1,
p=0

Lemma C.2. Suppose that (8) is satisfied. Then the optimal objective values of (9) and (10) coincide.

Proof. Let f® be the optimal objective of (9) and let f° be the optimal objective of (10). The
inequality ¢ > f° can be shown readily since (10) only relaxes some of the constraints of (9).

It remains to show that f¢ < f°. To show the inequality by contradiction, assume that each optimal
solution p® to (10) is infeasible in (9) (otherwise f@ < f?). Let the constraint violated by p® be:

(1e — 125\€)T (p—p) <,

for some set C. Since this constraint is not present in (10), that means that there exist ¢ and j such
thati < 7,4 € C, j ¢ ©, and because the constraint is violated:

pl=pi—e or ph=p;+e
for some € > 0. Assume now that p? = p; — €, the case when p = p; + € follows similarly.
Now, choose the largest k& > i possible, and let p® = p®, with the exception of:
a __ b a _ b
py =p;+e and pp=p; —e€.
This does not increase the violation of the constraint by p® over p®:
T _ T _
(1e —1as\e) (0" =) < (e —Lasve) (0° — D),
And it does not increase the objective function:
vTp® =0Tp” —e(v; —vy) <oTp’,
and thus remains optimal in (10). Repeating these steps until no constraints are violated leads to a
contradiction with the lack of an optimal solution to (10) that is not optimal in (9). L]
Lemma C.2 shows that we can replace the L; ambiguity set in (6) by the following set without
affecting the solution.

jjs,a = {p S AS : (lk...n - 11...(k—1))T(p _ps,a) < ws,av Vk = 07 ey (n + 1)} (11)

Now, following the same steps as the proof of Lemma C.1 but using (11) in place of (6) gives us the
following result.

Lemma C.3 (L; Error bound). Suppose that p_, is the empirical estimate of the transition probability
obtained from n o samples for each s € 8 and a € A. Then:

_ . 1ljg,an&a
B [ — Pl > ] < Sexp - 222020 )

Therefore, for any § € [0, 1]:

2

s,a

S2A
P lﬁs,a 7p;,a||1 S 10g6‘| < 1- 5/(SA) .
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D Detailed Description of Selected Algorithms

D.1 Computing Bayesian Confidence Interval

Algorithm 2: Bayesian Confidence Interval (BCI)

Input: Distribution 8 over p;a, confidence level §, sample count m
Output: Nominal point P , and L; norm size 95 4

Sample X1,...,X,, € A® from 6: X; ~ 6;

Nominal point: ps < (1/m) > i~ Xi;

Compute distances d; < ||ps,o — X;||1 and sort increasingly;
Norm size: s o < d(1-5)m;

return p, , and s q;

(7 T e

E Why Not Credible Regions

Constructing ambiguity sets from confidence regions seems intuitive and natural. It may be surprising
that RSVF abandons this intuitive approach. In this section, we describe two reasons why confidence
regions are unnecessarily conservative compared to RSVF sets.

The first reason why confidence regions are too conservative is because they assume that the value
function depends on the true model P*. To see this, consider the setting of Example 2.1 with 7,5, 4, =
0. When an ambiguity set P, ,, is built as a confidence region such that P[p} , € P, 4,] > 10,
it satisfies:

Pp- Llergn pTo < (pla)Tv, Vo€ RS

@} >1-6.

Notice the value function inside of the probability operator. Lemma B.1 shows that this guarantee is
needlessly strong. It is, instead, sufficient that the inequality in Lemma B.1 holds just for 9™ which is
independent of P* in the Bayesian setting. The following weaker condition is sufficient to guarantee
safety:

)To

Pp- { min p'v < (p}, D] >1-6, Yo e RS (12)

pe?s,u
Notice that v is outside of the probability operator. This set is smaller and provides the same
guarantees, but may be more difficult to construct [13].

The second reason why confidence regions are too conservative is because they construct a uniform
lower bound for all policies 7 as is apparent in Theorem 4.2. This is unnecessary, again, as Lemma B.1
shows. The robust Bellman update only needs to lower bound the Bellman update for the computed
value function ©™, not for all value functions. As a result, (12), can be further relaxed to:

: T 7 * \TAm
Pp. | min p o™ < (p5q) 077

@] S1_s, (13)

where 7 is the optimal solution to the robust MDP. RSVF is less conservative because it constructs
ambiguity sets that satisfy the weaker requirement of (13) rather than confidence regions. Deeper
theoretical analysis of the benefits of using RSVF sets is very important but is beyond the scope of
this work. Examples that show the benefits to be arbitrarily large or small can be constructed readily
by properly choosing the priors over probability distributions.
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