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Abstract
Optimism about the poorly understood states and actions is the main driving force of exploration for many provably-efficient rein-
forcement learning algorithms. We propose optimism in the face of sensible value functions (OFVF)- a novel data-driven Bayesian
algorithm to constructing Plausibility sets for MDPs to explore robustly minimizing the worst case exploration cost. The method
computes policies with tighter optimistic estimates for exploration by introducing two new ideas. First, it is based on Bayesian
posterior distributions rather than distribution-free bounds. Second, OFVF does not construct plausibility sets as simple confidence
intervals. Confidence intervals as plausibility sets are a sufficient but not a necessary condition. OFVF uses the structure of the value
function to optimize the location and shape of the plausibility set to guarantee upper bounds directly without necessarily enforcing
the requirement for the set to be a confidence interval. OFVF proceeds in an episodic manner, where the duration of the episode
is fixed and known. Our algorithm is inherently Bayesian and can leverage prior information. Our theoretical analysis shows the
robustness of OFVF, and the empirical results demonstrate its practical promise.
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1 Introduction

Markov decision processes (MDPs) provide a versatile methodology for modeling dynamic decision problems under uncer-
tainty [Bertsekas and Tsitsiklis, 1996; Sutton and Barto, 1998; Puterman, 2005]. A perfect MDP model for many reinforcement
learning problems is not known precisely in general. Instead, a reinforcement learning agent tries to maximize its cumulative payoff
by interacting in an unknown environment with an effort to learn the underlying MDP model. It is important for the agent to explore
sub-optimal actions to accelerate the MDP learning task which can help to optimize long-term performance. But it is also important
to pick actions with highest known rewards to maximize short-run performance. So the agent always needs to balance between them
to boost the performance of a learning algorithm during learning.

Optimism in the face of uncertainty (OFU) is a common principle for most reinforcement learning algorithms encouraging explo-
ration [Auer et al., 2010; Brafman and Tennenholtz, 2001; Kearns and Singh, 1998]. The idea is to assign a very high exploration
bonus to poorly understood states and actions. As the agent visits and gathers statistically significant evidence for these states-actions,
the uncertainty and optimism decreases converging to reality. Many RL algorithms including Explicit Explore or Exploit pE3q [Kearns
and Singh, 1998], R-MAX Brafman and Tennenholtz [2001], UCRL2 [Auer, 2006; Auer et al., 2010], MBIE [Strehl and Littman, 2008,
2004b,a; Wiering and Schmidhuber, 1998] build on the idea of optimism guiding the exploration. Probability matching class of al-
gorithms like Posterior Sampling for reinforcement learning (PSRL) [Osband and Van Roy, 2017; Osband et al., 2013; Strens, 2000]
performs exploration with a proportional likelihood to the underlying true parameters. PSRL algorithm is simple, computationally ef-
ficient and can utilize any prior structural information to improve exploration. These algorithms provide strong theoretical guarantees
with polynomial bound on sample complexity.

During exploration, it is possible for an agent to be overly optimistic about a potentially catastrophic situation and end up there paying
an extremely high price (e.g. a self driving car hits a wall, a robot falls off the cliff etc.). Exploring and learning such a situation may
not payoff the price. It can be wise for the agent to be robust and avoid those situations minimizing the worst-case exploration cost´
which we call robust exploration. OFU and PSRL algorithms are optimistic by definition and cannot guarantee robustness while
exploring. The main contribution of this paper is OFVF, an optimistic counter part of RSVF [Russel and Petrik, 2018]. OFVF is a
Bayesian approach of constructing plausibility sets for robust exploration.

The paper is organized as follows: Section 2 formally defines the problem setup and goals of the paper. Section 3 reviews some
existing methods to construct the plausibility sets and their extension to Bayesian setting. OFVF is proposed and analyzed in Section 4.
Finally, Section 5 presents empirical performance on several problem domains.

2 Problem Statement

We consider the problem of learning a finite horizon Markov Decision Process M with states S “ t1, . . . , Su and actions A “

t1, . . . , Au. p : S ˆ A Ñ ∆S is a transition function, where pass1 is interpreted as the probability of ending in state s1 P S by
taking an action a P A from state s P S . We omit s1 when the next state is not deterministic and denote the transition probability
as psa P RS . R : S ˆA Ñ R is a reward function and Rass1 is the reward for taking action a P A from state s P S and reaching
state s1 P S . Each MDP M is associated with a discount factor 0 ď γ ď 1 and a distribution of initial state probabilities p0. We
consider an episodic learning process where L is the number of episodes and H is the number of periods in each episode. A policy
π “ pπ0, . . . , πH´1q is a set of functions mapping a state s P S to an action a P A . We define a value function for a policy π as:

V πh psq :“
ÿ

s1

P
πpsq
ss1 rrh ` V ps

1qs (1)

The optimal value function is defined by V ‹h psq “ maxπ V
π
h psq and the optimal policy is defined by π‹psq “

arg maxaPA pass1V ps
1q, @s1 P S : pass1 ą 0.

Optimistic algorithms encouraging exploration find the probability distribution P̃sa for each state and action within an interval of the
empirically derived distribution p̄sa “ Er¨|s, as, which defines the plausible set Psa of MDPs. They then solve an optimistic version
of Eq. (1) within Psa that leads to the policy with highest reward.

V ‹h ps, aq :“ max
psaPPsa

ÿ

s1

p
πpsq
ss1 rrh ` V

‹ps1qs (2)

We evaluate the performance of the agent in terms of worst-case cumulative regret, which is the maximum total regret incurred by
the agent upto time T for a policy π‹l :

RegretpT, π‹l q “

T {H´1
ÿ

l“0

sup

„

ÿ

sPS

p0psq
`

V ‹psq ´ V π
‹
l psq

˘



(3)

Where V ‹psq is the true value w.r.t M ˚.
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3 Interval Estimation for Plausibility Sets

In this section, we first describe the standard approach to constructing plausibility sets as distribution free confidence intervals. We
then propose its extension to Bayesian setting and present a simple algorithm to serve that purpose. It is important to note that
distribution-free bounds are subtly different from the Bayesian bounds, the Bayesian safety guarantee holds conditional on a given
dataset D while the distribution-free hold across the sets. This makes the guarantees qualitatively different and difficult to compare.

3.1 Plausibility Sets as Confidence Intervals

It is common in the literature to use L1 norm as the distribution-free bound. This bound is constructed around the empirical mean of
the transition probability p̄s,a by applying the Hoeffding inequality [Auer et al., 2010; Petrik et al., 2016; Wiesemann et al., 2013;
Strehl and Littman, 2004b].

Psa “

"

‖p̃sa ´ p̄sa‖1 ď

d

2

ns,a
log

SA2S

δ

*

where p̄sa is the mean transition computed from D, ns,a is the number of times the agent arrived in state s1 after taking action a in
state s, δ is the required probability of the interval and ‖‚‖1 is the L1 norm. An important limitation of this approach is that, the size
of Psa grows linearly with the number of states, which makes it practically useless in general.

3.2 Bayesian Plausibility Sets

The Bayesian plausibility sets take the same interval estimation idea and extend it into Bayesian setting, which is analogous to
credible intervals in Bayesian statistics. Credible intervals are constructed with the posterior probability distributions and they are
fixed ´ not a random variable, given the data D . Instead the estimated transition probabilities maximizing the rewards are random
variables. To construct a plausibility set, we optimize for the smallest credible region around the mean transition probability with the
assumption that a smaller region will lead to a tighter upper bound estimate. Formally, the optimization problem to compute ψs,a for
each state s and action a is:

min
ψPR`

tψ : P r‖p̃s,a ´ p̄s,a‖1 ą ψ | Ds ă δu , (4)

where nominal point is p̄s,a “ EP̃ rp̃s,a | Ds. A Bayesian extension of the celebrated UCRL [Auer et al., 2010] algorithm is
BayesUCRL, which we consider for comparison. BayesUCRL algorithm uses a hierarchical Bayesian model that can be used to infer
the posterior transition probability over p‹. The plausibility set here is a function of the 1

t -quantile of the posterior samples. We omit
the details of BayesUCRL to conserve space.

4 OFVF: Optimism in the Face of sensible Value Functions

Algorithm 1: OFVF
Input: Desired confidence level δ and posterior distribution PP ‹r¨ | Ds
Output: Policy with a maximized safe return estimate

1 Initialize current policy π0 Ð arg maxπ ρpπ,EP ‹rP ‹ | Dsq;
2 Initialize current value v0 Ð vπ0

EP‹ rP
‹ | Ds;

3 Initialize value set V0 Ð tv0u ;
4 Construct P0 optimal for V0;
5 Initialize counter k Ð 0;
6 while Eq. (5) is violated with V “ tvku do
7 Include vk that violates Eq. (5): Vk`1 Ð Vk Y tvku ;
8 Construct Pk`1 optimized for Vk`1;
9 Compute optimistic value function vk`1 and policy πk`1 for Pk`1;

10 k Ð k ` 1 ;

11 return pπk, pT0 vkq ;

OFVF uses samples from a posterior distribution, similar to a Bayesian confidence interval, but it relaxes the safety requirement as it
is sufficient to guarantee for each state s and action a that:

min
vPV

PP ‹
„

max
pPPs,a

pp´ p‹s,aq
Tv ď 0

ˇ

ˇ

ˇ

ˇ

D



ě 1´
δ

SA
, (5)

with V “ tv̂‹Pu. To construct the set P here, the set V is not fixed but depends on the optimistic solution, which in turn depends on
P . OFVF starts with a guess of a small set for V and then grows it, each time with the current value function, until it contains v̂‹P
which is always recomputed after constructing the ambiguity set P .
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Figure 1: Cumulative regret for the single-state simple problem. Left) average-case, Right) worst-case.
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Figure 2: Cumulative regret for the RiverSwim problem. Left) average-case, Right) worst-case.

In lines 4 and 8 of Algorithm 1, Pi is computed for each state-action s, a P S ˆA . Center p̄ and set size ψs,a are computed from
Eq. (7) using set V & optimal gv computed by solving Eq. (6). When the set V is a singleton, it is easy to compute a form of an
optimal plausibility set.

g “ max
 

k : PP ‹rk ď vTp‹s,as ě 1´ δ{pSAq
(

(6)

For a singleton V , it is sufficient for the plausibility set to be a subset of the hyperplane tp P ∆S : vTp “ g‹u for the estimate to
be sufficiently optimistic. When V is not a singleton, we only consider the setting when it is discrete, finite, and relatively small. We
propose to construct a set defined in terms of an L1 ball with the minimum radius such that it is safe for every v P V . Assuming that
V “ tv1, v2, . . . , vku, we solve the following linear program:

ψs,a “ min
pP∆S

!

max
i“1,...,k

‖qi ´ p‖1 : vTi qi “ g‹i , qi P ∆S , i P 1, . . . , k
)

(7)

In other words, we construct the set to minimize its radius while still intersecting the hyperplane for each v in V .

5 Empirical Evaluation

In this section, we empirically evaluate the estimated returns over episodes. We assume a true model of each problem and generate
a number of simulated data sets for the known distribution. We compute the tightest optimistic estimate for the optimal return and
compare it with the optimal return for the true model. To judge the performance of the methods, we evaluate both the absolute error
of the worst case estimates from optimal, as well the average case estimate from optimal.

We compare our results with BayesUCRL and PSRL algorithms. We omit UCRL from comparison because it performs too poorly
compared to other methods. PSRL performs very well in both average and worst case, and as we will see in the experiments, OFVF
outperforms BayesUCRL and performs competitively with PSRL. For all the experiments, we use an uninformative Dirichlet prior
for the transition probabilities, and run experiments for 100 episodes each containing 100 runs, unless otherwise specified.

Single-state Bellman Update We initially consider a simple problem with one single non-terminal state. The agent can take three
different actions on that state. Each action leads to one of three terminal states with different transition probabilities. The value
function for the terminal states are fixed and assumed to be known. Fig. 1 compares the average-case and worst-case returns computed
by different methods. Note that OFVF outperforms all other methods in this simplistic setting. OFVF is able to explore in a robust
way maximizing the worst and average case returns.
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RiverSwim Problem We compare the performance of different methods in standard example of RiverSwim [Osband et al., 2013;
Strehl and Littman, 2004b]. The problem is designed requiring hard exploration to find the optimal policy, we omit the full description
of the problem to preserve space. Fig. 2 compares the average and worst case regrets of different methods. Among optimistic methods,
OFVF performs better than BayesUCRL both in average and worst case scenario. But the stochastically optimistic PSRL outperforms
all other methods. This is due to the fact that, BayesUCRL and OFVF constructs a plausibility set for each state and action. Even
if the plausibility sets are tight, the resulting optimistic MDP is simultaneously optimistic in each state-action, yielding a way too
optimistic overall MDP model [Osband and Van Roy, 2017]. Thus OFVF can construct tighter plausibility sets for exploration, but
still may not match the statistical efficiency of PSRL. This performance however shows that, as an OFU algorithm, OFVF can be
reasonably optimistic and can offer competitive performance.

6 Summary and Conclusion

In this paper, we proposed OFVF, a Bayesian algorithm capable of constructing plausibility sets with better shapes and sizes. Beside
the fact that our proposed Bayesian methods are computationally demanding than other distribution free methods, our theoretical and
experimental analysis furnished that they can pay-off with much tighter return estimates. We showed that, OFU algorithms can be
useful and can be competitive to stochastically optimistic algorithm like PSRL.
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