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Abstract

Decentralized Markov Decision Processes are a power-
ful general model of decentralized, cooperative multi-agent
problem solving. The high complexity of the general prob-
lem leads to a focus on restricted models. While the worst-
case hardness of such reduced problems is often better, less
is known about the actual expected difficulty of given in-
stances. We show tight connections between the structure of
agent interactions and the essential dimensionality of various
problems. Bounds can be placed on the difficulty of solving
problems, based upon restrictions on the type and number of
interactions between agents. These bounds arise from a bi-
linear programming formulation of the problem; from such a
formulation, a more compact reduced form can be automati-
cally generated, and the original problem can be rewritten to
take advantage of the reduction. These results are of theoreti-
cal and practical importance, improving our understanding of
multi-agent problem domains, and paving the way for meth-
ods that reduce the complexity of such problems by limiting
the degree of interaction between agents.

Introduction
Decentralized Markov decision processes(Dec-MDPs) are
an extension of the basic MDP framework to distributed,
cooperative problems. The model is more general, and
more complex, than that ofmultiagent MDPs(MMDPs,
see (Boutilier 1999)). In the latter, each agent observes the
complete system state at every point in time, and policies
can be generated from a fundamentally centralized point of
view. In a Dec-MDP, on the other hand, each agent pos-
sesses only some local, unshared information, and must of-
ten act without full knowledge of what others observe, or
plan to do. Finding a globally optimal policy for general
Dec-MDPs is NEXP-complete (Bernsteinet al. 2002). Op-
timal solution algorithms face doubly-exponential growth
in necessary space and time, rendering even simple prob-
lems intractable. The first-known optimal method uses dy-
namic programming to generate finite-horizon policies, ap-
plying iterated pruning techniques to reduce the number
considered (Hansen, Bernstein, & Zilberstein 2004). How-
ever, such basic pruning does not make the general prob-
lem tractable; even for a very simple problem, the method
cannot generate policies beyond a handful of time-steps.
Similar results have been reported with respect to top-
down methods employing heuristic search: again, only the

smallest problems can be solved (Szer & Charpillet 2005;
Szer, Charpillet, & Zilberstein 2005). A good overview can
be found in Seuken and Zilberstein (2005).

Indeed, such problems are hard to solve even under other
criteria than global optimality. Rabinovichet al. (2003)
show thatǫ-approximate solutions are NEXP-hard. While
locally optimal methods have been devised to deal with
problem complexity (e.g., Nairet al.(2003)), no sharp guar-
antees can be given about overall output quality. Koller and
Megiddo (1992) showed that even finding Nash equilibria in
such problems is NP-Hard. Other approaches isolate special,
simpler sub-classes. Decentralized MDPs with independent
transition-functions are only NP-complete, and specialized
algorithms solve many reasonably-sized problems (Becker
et al. 2004). More special cases have been considered by
such as Kimet al. (2006).

We concentrate here on the problem of reducing the di-
mensionality and complexity of certain such special prob-
lems, with limited interactions between agents. In the de-
centralized MDP domain, Shenet al. (2006) suggest that
complexity of a decentralized problem increases with the
“degree of interaction” between agents. We develop these
ideas in one particular possible direction, specifying special
cases in terms of a fixed number ofeventsandconstraints
on joint reward, as defined below. We describe one method
of isolating the essential dimensionality of such Dec-MDPs
via formulation as separable bilinear programs. This leads
to some new results. We show how the bilinear program-
ming version of the problem can be converted back into the
event-based structure, and that doing so often reduces (and
provably never increases) a key factor governing solution al-
gorithm performance.

Outline of the Paper
We begin by defining the specific type of Dec-MDP frame-
work used in this work, and outlining the shared reward con-
straint structure that is the main source of problem complex-
ity for such domains. Following that, we describe how such
problems can be formulated and solved as bilinear programs,
and reviews a method for compacting the problem to its es-
sential dimensions. Next, we present proofs that demon-
strate connections between the constraint structure and the
essential dimensionality of a problem instance; it is shown
how dimension compactification can be used to generate a



compact constraint structure, reducing the hardest aspectof
the problem as much as possible. Finally, we explore the
implications of this work.

Decentralized MDPs
As already outlined, the NEXP-hardness of the general Dec-
MDP problem translates into practical difficulties solving
even the simplest fully decentralized instances, and leadsto
interest in techniques applicable to special sub-cases. Wefo-
cus on a class of problems first introduced by Becker, Lesser,
and Zilberstein (2004). In such domains, agents operate on
Markov processes that are independent, but for shared in-
fluence on the joint reward. Such problems are truly de-
centralized, as agents only observe and operate on states of
their own MDP, but the shared reward means that they must
attempt to coordinate despite lacking information about ob-
servations and actions of other agents involved. These prob-
lems are defined based on single-agent MDPs.

Definition 1. A Markov decision processis a tuple:

M = 〈S, A, P, R, ∆S , T 〉
with individual components:

• S is a finite set of world states.
• A is a finite set of available actions.
• P (s, a, s′) is a state-transition function.
• R : (S × A) → ℜ is the reward function.
• ∆S is the initial state-distribution.
• T is the finite time-horizon of the problem.

To define the shared reward structure of the multiagent Dec-
MDP version, we require the following further notions.

Definition 2. For any MDPM, an event fromM is some
set of state-action pairs,

E = {〈s, a〉1, 〈s, a〉2, . . . , 〈s, a〉m} ⊆ (S × A).

WhenE is a singleton{〈s, a〉} we callE a primitive event,
and we also refer to〈s, a〉 itself as a (primitive) event.

This definition is a novel simplification of that given by
Beckeret al. (2004), as we do not require uniqueness con-
ditions present there (although such conditions could be ac-
commodated without affecting the results given here). Our
notion of event is to be considered disjunctive, i.e. the event

E = {〈s1, a1〉, 〈s2, a2〉, . . . , 〈sm, am〉} ⊆ (S × A)

can be thought of as a statement to the effect that an agent
performs actiona1 in states1 OR performs actiona2 in state
s2 . . .OR performs actionam in statesm.

Definition 3. For a pair of MDPsM1, M2, a reward-
constraint onM1, M2 is a triple c = 〈E1, E2, rc〉, where
eachE i is an event fromMi, andrc ∈ ℜ.

A reward-constraint is the basis for defining a shared de-
pendency between the two processesM1 andM2. Again,
such a constraint〈E1, E2, c〉 can be regarded as a state-
ment to the effect thatif eventE1 occurs AND eventE2

occurs, then the system receives additional rewardrc. Such
structures provide an intuitive definition of shared reward,

and naturally describe many domains in which agents are
engaged, for instance, in complementary or redundant sub-
tasks. These problems allow separate execution, but can still
make the overall system reward a complex function of com-
bined agent behaviors, requiring coordination.

To properly define such a problem, the reward-constraints
must obey a particular simple condition, however.

Definition 4. Let C = {c1, . . . , cm} be a set of reward-
constraints on some pair of MDPsM1, M2. C is feasible
iff all distinct reward-constraints are non-intersecting:

(∀ 〈s, a〉1, 〈s, a〉2)(∀ ci, cj)

〈s, a〉1 ∈ E1
i ∧ 〈s, a〉1 ∈ E1

j

∧ 〈s, a〉2 ∈ E2
i ∧ 〈s, a〉2 ∈ E2

j ⇒ rci
= rcj

.

That is, a feasible set of reward-constraints can never as-
sign more than one reward to a pair of primitive events
(〈s, a〉1, 〈s, a〉2). Note that such sets need not assign val-
ues to all pairs of primitive events; only that each such pair
may be assigned at most one supplementary shared reward.
Such pairs define the interaction structure in a Dec-MDP.

Definition 5. For two agentsx and y, a two-agentdecen-
tralized Markov decision process (Dec-MDP)is a triple

D = 〈Mx, My, ρ〉
whereMx and My are MDPs andρ, the shared-reward
structure forD, is a feasible set of reward-constraints.

An optimal solution to a Dec-MDP is a pair of determinis-
tic policies,πx, πy, one per agent, maximizing the expected
sum of individual rewards (Ri ∈ Mi) and joint reward (ρ).

Note that this defines a proper subclass of the general
Dec-MDP (or Dec-POMDP), which do not restrict their con-
nections only to the reward function, and feature dependen-
cies between state-action transitions and state-observations.
As defined by Beckeret al. (2004), these special problems
are properlytransition and observation-independent, locally
and jointly fully observable Dec-MDPs; for convenience, we
simply refer to them as Dec-MDPs.

While these are but restricted versions of the general class,
they are still useful for representing many real-world prob-
lems in which agents can work separately, without interfer-
ing with one another, but overall value of actions is a func-
tion of all the agents together. Examples include domains in
which tasks can be divided into components that can be ac-
complished separately; given uncertainty about progress and
outcome of subtasks, such problems still prove challenging.

Indeed, Beckeret al. (2004) show that solving these Dec-
MDPs is NP-complete. While this significantly reduces
worst-case complexity from NEXP-hardness, solution can
still be quite difficult in practice. They apply a specialized
method, theCoverage Set Algorithm(CSA), to such prob-
lems; they show that it can perform quite well on some cases,
although it is not applicable to Dec-MDPs in general. The
main hurdle in using the CSA on a given Dec-MDPD comes
from the shared-reward structureρ: while most of the al-
gorithmic heavy lifting is performed efficiently using linear
programming and hill-climbing methods, the algorithm iter-
ates exponentially in the number of reward-constraints,|ρ|.



This motivates our current research. As we will show, the
structure ofρ is tightly bound to thedimensionalityof a Dec-
MDP. Asρ grows, so generally will the dimensionality. We
give bounds on this growth, and then show how techniques
for dimensionality compactification reduce the problem to
only its essential (or dominant) dimensions. Further, we
show that such techniques can be used to generate new, often
much smaller, shared-reward structures. These results pro-
vide firm connections between dimensionality and reward
interactions in a Dec-MDP, and can reduce the complexity
of the constraint structure, thus improving performance for
algorithms like CSA that are highly sensitive to|ρ|.

An example Dec-MDP

We present a simple example Dec-MDP, to help make things
clear. In this domainD, two agentsx andy must make some
delivery of goods of typea andb to one of two customers,c1

andc2. For each agent, the individual action-outcomes and
rewards are given by two MDPs,Mx andMy. The par-
ticular details are unimportant; we simply note that specify-
ing the MDPs separately, with separate transition and reward
functions, means that they can be regarded as wholly inde-
pendent from the point of view of each agent. Further, the
techniques we present are able to easily solve each agent’s
independent sub-problem, based on the transition probabili-
ties and reward functions of the individual MDPs.

However, the delivery problem contains one important
source of dependency: the first customer,c1, is willing to
(1) pay $2 extra for receiving two items, and (2) will give an
additional $2 bonus if it actually receives two different types
of items. This shared bonus can be given in terms of the fol-
lowing feasible set of events (writing〈ci, dlj〉k for the event
of agentk delivering item typej to customerci).

ρ =
[

〈〈c1, dla〉x, 〈c1, dla〉y, 2〉,
〈〈c1, dla〉x, 〈c1, dlb〉y, 4〉,
〈〈c1, dlb〉x, 〈c1, dla〉y, 4〉,
〈〈c1, dlb〉x, 〈c1, dlb〉y, 2〉

]

The shared-reward structure is therefore as shown in Table 1,
which tracks the extra reward to be gained for the various
state-action pairs for each agent. In general, any shared-
reward structure can be represented in such a matrix form,
where each entry corresponds to the shared-reward bonus
for the corresponding pair of primitive events. Obviously,
for any pair of MDPsMx andMy, the size of this ma-
trix representation is|Sx| |Ax| × |Sy| |Ay|. Note also that
this matrix only describes the shared reward for the rele-
vant states and actions; there may be many more state-action
pairs that play no role in the joint reward, but are part of the
independent single-agent MDP planning problems. The pol-
icy for such a problem will involve actions for each agent in
its own sequential planning problem—which might involve
such things as planning local routes to various deliveries,
for instance—while also maximizing overall reward based
on the shared constraints.

x\y 〈c1, dla〉y 〈c2, dla〉y 〈c1, dlb〉y 〈c2, dlb〉y
〈c1, dla〉x 2 0 4 0
〈c2, dla〉x 0 0 0 0
〈c1, dlb〉x 4 0 2 0
〈c2, dlb〉x 0 0 0 0

Table 1: The shared-reward structure for the simple delivery
problem for agentsx andy.

Bilinear Programs and Dec-MDPs
Petrik and Zilberstein (2007) have demonstrated how this
class of Dec-MDPs can be represented and solved as sepa-
rable bilinear programs (for more details on separability,see
Horst & Tuy (2003)). We have simplified that presentation
somewhat here. For Dec-MDPD = 〈Mx, My, ρ〉, we de-
fine the equivalent bilinear program:

maximize rT
1 x + xT Ry + rT

2 y

subject to Axx = ∆Sx x ≥ 0

Ayy = ∆Sy y ≥ 0

(1)

Such a program is defined similarly to the dual linear pro-
gram form for single-agent MDPs (see Puterman (2005)).
The vectorsx andy are composed of variables correspond-
ing to the possible state-action pairs from the two MDPs;
we write x(s, a) for the state-action pair corresponding to
s ∈ Sx and a ∈ Ax, for instance. Each linear reward-
vectorri in the objective function is simply the individual
reward, taken fromRi ∈ Mi. The matricesAi encode
state-visitation information, so that the multiplicationin the
constraints generates the original state distribution∆Si , pre-
serving total flow in the system for each state; for instance,
multiplying vectorx by Ax yields, for anys ∈ Sx,
∑

a∈Ax

x(s, a) −
∑

s′∈Sx

∑

a′∈Ax

P (s | s′, a′)x(s′, a′) = ∆Sx(s).

Note that all elements so far are linear. However, we get
generally non-linear behavior in the objective function via
the matrixR, encoding the shared-reward structure of the
Dec-MDP. This leads to NP-hardness in solving the overall
problem, although methods have been found that work quite
well in practice. Once the mathematical program has been
solved, the agent policies for agentx can be extracted by
lettingπx(s) = a iff x(s, a) > 0, and similarly fory.

While any general Dec-MDP can be represented bilin-
early in principle, it is only practical for either very small
general problems, or for the special nearly-independent form
given here. Koller and Megiddo (1992; 1996) consider the
representation of extensive-form games in the form of lin-
ear complementarity problems (LCP, see (Cottle, Pang, &
Stone 1992)). Mangasarian (1995) shows how such LCPs
can in turn be represented as a separable bilinear program.
Unfortunately, for the general problem class, this two-stage
reduction is of little practical use: variables take the form of
possibleaction-observation sequencesfor each agent, and
thus the resulting bilinear formulation is exponentially large
in the size of the original Dec-MDP. (This is not a failure of
the method, per se; evidently, given the NEXP-hardness of



the original general class, this is unavoidable by any method
in the worst case). Still, such reductions are possible in prin-
ciple, and may lead to useful methods in some general cases.
A similar approach is used by Araset al. (2007), who per-
form a similar sequence-form reduction in order to solve
Dec-MDPs via mixed integer programs. Similarly, Amato
et al. (2006; 2007) employ quadratically-constrained linear
and non-linear methods to solve the general problem. These
methods extend the ability to solve some general-form Dec-
MDPs (and Dec-POMDPs), but are still limited by their in-
herent complexity.

The bilinear approach is particularly useful in the special
case described here, whereR is simply a reward matrix on
state-action pairs. Especially interesting is the possibility
for dimensionality reduction. As we show, this technique al-
lows us to develop automated methods for reducing the size
of reward-constraint formulations of Dec-MDPs, providing
new hope for methods like CSA that scale poorly.

Dimensionality Reduction
We will refer to thedimensionalityof a bilinear program for
a Dec-MDP as in (1), by which we meann, the size of they-
dimension of shared-reward matrixR. As we will describe,
this dimensionality has been observed to dominate the com-
plexity of solving such programs, and we will prove that it is
tightly bound to the shared reward constraint structure. Note
that in what follows, we assume that the original matrixR is
a square(n×n) matrix, i.e. thatx andy are both of lengthn;
for two MDPs with differently sized state or action-sets, this
can be enforced by padding out the smaller MDP with null
actions and null states. This is trivial and convenient. Note
also that we could as easily perform all described operations
along thex-dimension ofR; nothing depends upony.

Petrik and Zilberstein (2007) prove that a given Dec-MDP
can easily and automatically be reduced to its essential di-
mensions, based on shared-reward matrixR. That is, we
can perform the following elementary matrix operations to
eliminate all constant dimensions ofy (along which the best
response for agenty is the same for anythingx does):
Eigenvector Generation: Generate the(n × n) matrix
RT R, and calculate the eigenvectors ofRT R. SinceRT R
is always a symmetric square matrix, these eigenvectors can
be written in their orthonormal form.
Divide the EigenvectorsLet F be the matrix with columns
formed by all eigenvectors ofRT R with non-zero eigenval-
ues; letG be the zero-value eigenvectors. Let[F ;G] be the
matrix of all eigenvectors, with all ofF first (otherwise or-
der of columns does not matter). Note that sinceRT R is
symmetric and(n × n), [F ;G] is also an(n × n) matrix.
Generate the Inverse:Let D = [F ;G]−1. It is an elemen-
tary fact about the collection of eigenvectors of symmetric,
squareRT R that such an inverse exists. Letk be the number
of columns inF (i.e., the number of non-zero eigenvectors
of RT R), let matrixDT

k be the firstk rows ofDT (i.e., the
transposed inverse corresponding to those non-zero eigen-
vectors), and let matrixDT

k+1
be the remaining rows.

Separate Dimensions:Let y1 = DT
k y andy2 = DT

k+1
y.

This separates out those dimensions ofy that “matter” in

our problem (y1), from those that do not (y2). Let 〈y1, y2〉
be the vector composed ofy2 appended toy1. (Note that the
size of[y1; y2] is just the same as the original,n = |y|.)

It is now elementary that the following is equivalent to the
original mathematical program (1):

maximize rT
1 x + xT RFy1 + rT

2 [F ;G]〈y1, y2〉
subject to Axx = ∆Sx

Ay[F ;G]〈y1, y2〉 = ∆Sy

x ≥ 0 y1 ≥ 0 y2 ≥ 0.

(2)

It is easy to verify by the construction ofy1 andy2 as a result
of inverse multiplication that[F ;G]〈y1, y2〉 = y, and so this
formulation respects the original individual reward function
r2 for agenty, and the original constraints on distribution of
states,∆Sy . What is interesting, however, is that we can re-
place the original(n × n) joint-reward matrixR in (1) with
the(n × k) matrix RF here; whenk, the dimensionality of
F , is small, andRT R has few non-zero eigenvectors, this
can be a substantial savings. Furthermore, we can then go
back to the original problem formulation, and replace the
reward-constraint structure with a new one, often smaller,
as we describe below. This means that we can preserve the
often more intuitive structure, based on events, and use al-
gorithms exploiting this sort of structure.

Application to Our Example Problem
To see how this works in practice, let us consider again
our simple delivery problem, with a 4-dimensional shared-
reward matrix as found in Table 1:

R =

2

6

4

2 0 4 0

0 0 0 0

4 0 2 0

0 0 0 0

3

7

5
R

T
R =

2

6

4

20 0 16 0

0 0 0 0

16 0 20 0

0 0 0 0

3

7

5

The non-zero eigenvectors ofRT R are thus the columns of:

F =

2

6

6

4

1
√

2

1
√

2

0 0
1
√

2
− 1

√

2

0 0

3

7

7

5

In this case, further, the inverse-row-matrixDT
k = FT ; it is

important to note that this will not hold in general, although
DT

k always exists and is easily calculated. Thus, we have the
following (usingy(i, k) to abbreviate the event ofy giving
itemk to customeri):

RF =

2

6

6

4

3
√

2 −
√

2

0 0

3
√

2
√

2

0 0

3

7

7

5

y1 = D
T
k y =

"

y(1,a)+y(1,b)
√

2
y(1,a)−y(1,b)

√

2

#

Our new joint-reward matrixRF is now 2-dimensional,
and has only twoy1-variables, each a linear combination
of pre-existing variables. One can easily confirm that the
minimized reward function is identical to the original (that
is, xT Ry = xT RFy1), and so the resulting objective func-
tion is equivalent to the original. It is also easy to generate
remaining componentsG andy2, and confirm that all other
operations preserve equivalent problem input and output.



For an example like this, the dimensionality reduction is
not very surprising; clearly, in the original specificationof
R, deliveries to the second customer play no role in max-
imizing the shared reward. No extra reward is received for
deliveries toc2, and the columnsy(2, ∗) and rowsx(2, ∗) are
all empty (0). This is not generally the case, however; the
method does not amount to simply ignoring columns that are
all 0. There will be many cases in which no columns or rows
of the originalR are empty, and yet we can still compactify.

Furthermore, this example shows an important, and less
obvious, new feature of the dimension reduction process,
namely the compactification of the overall reward-constraint
structure. While prior work has been interested in converting
event-based Dec-MDPs into the bilinear formulation solely
as a means of solving them, we can now go a step further.
That is, we can convert the reduced bilinear formback into
the reward-constraint formulation, with the possibility of a
substantive savings in the size of the structureρ.

Even though our original problem was very small, we are
still able to re-write it using a smallerρ than was possible
before. Comparing the two matrices from the two presenta-
tions of the problem:

R =







2 0 4 0
0 0 0 0
4 0 2 0
0 0 0 0






RF =









3
√

2 −
√

2
0 0

3
√

2
√

2
0 0









we see that in original matrixR, no non-zero column or row
contains any repeated values. Thus, the original shared-
reward structureρ is minimal with respect to its elemen-
tary events. That is,ρ needs four distinct entriesρ to spec-
ify R. In the case ofRF , however, this is not true, since
the first column, corresponding to new variable(y(1, a) +

y(1, b))/
√

2 ∈ y1, contains only a single value,3
√

2. It
follows that we can write a new reward-constraint structure
in terms of the new, compound event-variables iny1, fea-
turing only 3 entries. Even on this small, nearly minimal
example, then, we have reduced the minimum number of
constraints necessary to describe the joint-reward structure.
For algorithms like CSA, exponential in this value, this can
significantly improve performance.

Constraints and Dimensionality
As we now show, these reductions, in both overall dimen-
sionality and size of the minimal reward-structure are not
accidental: we can in fact relate the basic properties of the
minimal constraint structure for a problem to the dimension-
ality of its reduced bilinear form, to establish that the re-
duced form will always be no larger than the original.

We first establish an upper bound upon theessential di-
mensionalityof a Dec-MDP, by which we mean the dimen-
sionality of the reward matrixRF in the compactified bi-
linear form; we writek[D] for the essential dimensionality,
with k = # columns ofRF .

Theorem 1. LetD = 〈Mx, My, ρ〉 with

ρ =
[

〈Ex
1 , Ey

1 , r1〉, 〈Ex
2 , Ey

2 , r2〉, . . . 〈Ex
m, Ey

m, rm〉
]

and let
Yρ = ∪m

i=1Ey
i .

Thenk[D] ≤ |Yρ| .
That is, the essential dimensionality of the problem is

bounded on top by the size of the set formed from the union
of all y-events inρ. While this bound may be loose, it can
often provide a good guide to the overall essential complex-
ity of a given Dec-MDPD.

Proof. Let the length of our originaly-vector ben (so the
dimensionality of the unreducedR matrix is alson). Now
consider any primitive event〈s, a〉yj /∈ Yρ; since this event is
not featured in any constraint inρ, we have that columnj of
R is entirely 0. Thus, columnj of RT R is entirely 0, and so
we have that there exists a unitary vector

v0
j = [01 02 · · · 0j−1 1j 0j+1 · · · 0n−1 0n]

T

(i.e. 0’s in all places, and 1 in placej), which is an eigenvec-
tor of RT R with eigenvalue = 0. For each such〈s, a〉yj /∈ Yρ,
such a distinctvj will exist; each will be orthogonal, and the
entire collection can be put into orthonormal form. Thus the
size of the setG of all 0-value eigenvectors ofRT R will be
at least the size of the complement ofYρ, |G| ≥ (n − |Yρ|).
Therefore, since|F | = (n − |G|), k[D] = |F | ≤ |Yρ|

Thus, for any Dec-MDPD, we can bound the dimension-
ality of the reduced form in advance. In the worst case, when
Yρ = {y(s, a) | s ∈ Sy, a ∈ Ay}, this bound will simply be
n. Of course, the worst case for compactification is that all
eigenvalues ofRT R are non-zero, and dimensionality is in
factn. (This is equivalent to invertibility ofR).

A more interesting result concerns the opposite direction,
namely bounding the size of the minimal constraint structure
for Dec-MDPD based upon the reduced problem represen-
tation. As noted, our example problem can be written using
3 constraints once in compact bilinear form, rather than the
original 4. This point can easily be made general.

Fact 1. LetD be a Dec-MDP written in reduced form(2),
with compactified shared-reward matrixRF . For any col-
umni of RF , letui[RF ] be the number of unique values oc-
curring in that column. ThenD can be written in an equiv-
alent formD−, using reward structureρ− with size:

∣

∣ρ−
∣

∣ =

|RF |
∑

i=1

ui[RF ].

We can see this from our example problem, where the
reward structure will be:

ρ =
[

〈{x(1, a), x(1, b)}, y(1, a) + y(1, b)√
2

, 3
√

2〉,

〈x(1, a),
y(1, a) − y(1, b)√

2
, −

√
2〉,

〈x(1, b),
y(1, a) − y(1, b)√

2
,
√

2〉
]

In general, for any column ofRF corresponding to a com-
pound event variabley− ∈ y1, and any unique valueu in that



column, reward structureρ− requires one constraint. Each
such constraint will be of the form

c = 〈Ex, y−, u〉

whereEx is the set of all state-action pairsx(s, a) corre-
sponding to rows ofRF in which valueu appears. This
allows us to easily bound the general size of the reduced
shared-reward structure.

Fact 2. Let Dec-MDPD = 〈Mx, My, ρ〉, be written in
equivalent formD− as just described. We have an upper
bound on the size of the reduced shared-reward structure:

∣

∣ρ−
∣

∣ ≤ |Sx| |Ax| k[D].

Proof. This is a straightforward application of Fact 1. Since
the size of the structure is|ρ−| =

∑|RF |
i=1

ui[RF ], and the
number of unique values in any column ofRF is at most
n = |Sx| |Ax| (i.e., simply the number of rows inRF , equal
to the size of vectorx). The result is then obvious, since the
number of columns inRF is simply the number of columns
in F , i.e. the essential dimensionalityk[D].

Along with these basic bounds, we can also prove some-
thing far more significant about the shared-reward structure
of a compactified Dec-MDPD. In particular, we can show
that by puttingD in the reduced form (2), and then rewrit-
ing it in terms of the induced reward structure, we can only
reduce the number of constraints required.

Theorem 2. LetD be a Dec-MDP with|ρ| = n; let D− be
the compactified bilinear form of the problem, andρ− be the
resulting constraint structure, as described above. Then we
have the following:

∣

∣ρ−
∣

∣ ≤ |ρ|
The full proof of Theorem 2 requires two parts. We must

show that the original formulation ofD must contain at least
one distinct constraint for (i) every column ofRF , and (ii)
every distinct value in that column. The first is easily shown;
here, we prove the second, since it is more interesting.

Proof. Consider any columnc of RF , and suppose it con-
tains two distinct valuesci 6= cj . Let vc ∈ F be the col-
umn eigenvector ofF that generated columnc ∈ RF (i.e.,
c = Rvc). Thus, since

ci =

n
∑

k=1

rikvc and cj =

n
∑

k=1

rjkvc

there must exist columnk∗ of R such thatrik∗ 6= rjk∗ (else
ci = cj). Therefore, in the original problem formulation of
D, the specification ofR in terms of events will require two
separate and distinct constraints:

c1 =〈Ex
1 = {〈s, a〉xi , . . .}, Ey

1 = {〈s, a〉yk∗ , . . .}, rik∗〉,
c2 =〈Ex

2 = {〈s, a〉xj , . . .}, Ey
1 = {〈s, a〉yk∗ , . . .}, rjk∗〉.

Thus, each distinct value in any column ofRF corresponds
to at least one constraint in the original problem.

Thus, the reduction in number of necessary constraints
observed for our example problem is no accident. Rather,
the three-stage process of (1) conversion into bilinear form,
(2) dimensionality reduction, and (3) re-conversion into
event-based reward-constraint form, will never increase the
size of the problem specification (since it only ever shrinks
ρ, and leaves all else alone).

Practical Applications
These techniques are of more than formal interest. Our
ongoing research has applied the presented techniques to
a number of domains, including the multiagent broadcast-
channel and tiger problems, standard benchmarks used, for
example, in recent work by Araset al. (2007), and a com-
mon Dec-MDP formulation of a Mars rover robot explo-
ration problem, used in the work of Becker, Lesser & Zil-
berstein (2004). The reduction method has been shown to
reduce the number of events necessary to specify a wide
range of these domains. We found that in the broadcast do-
main, dimensionality (and the number of necessary events)
is reduced to 3 no matter what the original problem size,
providing a potentially very large reduction from the event-
based specification. In the rover case, many irrelevant events
are eliminated, reducing to one for each site that two rovers
both explore, out of many initial events involving all possi-
ble sites; additionally, in particular instances the number of
events may further be reduced even more significantly, with
very little resulting error. Finally, when applied to instances
of the decentralized tiger problem, the number of events is
reduced by about a factor of 5, from 108 to 20, with a re-
ward loss of at most 2%. Since even linear reductions in the
number of events provides exponential possible speed-ups
for algorithms like the CSA, this transforms such problem
instances from ones that are simply infeasible to those that
can be practically solved after all.

Conclusions and Discussion
As we have shown, the reduction process allows us to po-
tentially eliminate constant dimensions for one of agent’s
actions, and also rewrite the problem in terms of a smaller
reward structure. While the method of converting into bilin-
ear program and doing dimensionality reduction was already
known, this work is the first to consider how to move back
to the original form, and how that affects problem size. This
is of theoretical and practical interest.

In analytical terms, this method allows us to reveal the es-
sential structure of dependencies between agents in a Dec-
MDP. By converting to the reduced form, find a more min-
imal set of events suitable for representing a domain. The
event-based formulation is very convenient and intuitive,but
can be highly inefficient. While simple techniques for merg-
ing events exist, they are limited. In fact, as we have shown,
problems can be such that there is simply no way of reducing
the size of the event formulation, so long as we use state-
action pairs. This poses a serious roadblock to the use of
methods like the Coverage Set Algorithm, which explicitly
iterates based on separate constraints. Our process of reduc-
tion allows problems to reduce this size, often dramatically.



Of course, it may be hard to look at a linear combina-
tion of state-action pairs, as generated by our method, and
see how this relates to the structure of the original prob-
lem. That is, it is difficult to interpret the weighted combi-
nation of elementary events produced by compactification.
Our ongoing work concerns Dec-MDPs for which this prob-
lem of interpretation is much easier. In such cases, the par-
tial inverse matrixDT

k is of a special form, and our new re-
duced problem can be expressed in terms of simple events
from the original problem, while still reducing the maxi-
mum number of constraints generated. These sorts of exten-
sions have many possible practical applications, since they
can provide ways of automatically reconfiguring large and
complex multiagent system specifications, eliminating un-
necessary events and reward-constraints from consideration.

Finally, we note that is straightforward to extend this ap-
proach to problems with more than two agents, if rewards
depend on pairs of agents and the dependency graph is bi-
partite. In this case, the problem is again formulated bilin-
early. An extension to general multiagent problems is more
problematic. A possible approach may rely on a multilinear
program formulation, and then applying a tensor version of
singular value decomposition (SVD). The problem is that in
general, these methods are often NP-complete, unlike two-
dimensional SVD, which can be done in polynomial time.
Clearly, this is an important next step.
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