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Abstract— There are many human-robot interaction (HRI)
tasks that are highly structured and follow a certain temporal
sequence. Learning such tasks from demonstrations requires
understanding the underlying rules governing the interactions.
This involves identifying and generalizing the key spatial
and temporal features of the task and capturing the high-
level relationships among them. Despite its crucial role in
sequential task learning, temporal reasoning is often ignored
in existing learning from demonstration (LfD) research. This
paper proposes a holistic LfD framework that learns the
underlying temporal structure of sequential HRI tasks. The
proposed Temporal-Reasoning-based LfD (TR-LfD) framework
relies on an automated spatial reasoning layer to identify and
generalize relevant spatial features, and a temporal reasoning
layer to analyze and learn the high-level temporal structure of
a HRI task. We evaluate the performance of this framework by
learning a well-explored task in HRI research: robot-mediated
autism intervention. The source code for this implementation is
available at https://github.com/AssistiveRoboticsUNH/TR-LfD.

I. INTRODUCTION

Learning from Demonstration (LfD) is a popular robot
learning paradigm in which the goal is to develop a policy for
performing a task based on a set of demonstrations provided
by a human teacher [1], [2]. LfD has been employed to
teach robotic systems low-level tasks such as generalizing the
motion trajectories needed to perform obstacle avoidance [3],
pick-and-place operations [4], or furniture assembly [5], [6].
Similarly, LfD has been employed to learn policies for high-
level tasks such as object sorting [7] and domestic activities
[8], [9]. The majority of LfD frameworks derive policies by
focusing on the key spatial features of the task, disregarding
the temporal structure. Many HRI tasks can be defined by
their rigid temporal structure. A prominent example is the
highly explored HRI domain of robot-mediated intervention
(RMI) for autism spectrum disorder [10]. Each RMI follows
a set of activities to be performed by a robot subjected
to student responses, with each activity-response pair being
fully pre-defined. Although almost all RMI in the existing
literature are either tele-opearted or pre-coded, if we want to
learn an arbitrary intervention solely from observations, the
temporal structure of the RMI sessions will act as the major
discriminatory feature for policy learning. Our previous work
reported in [11], the first attempt to learn an RMI from
video observations, highlighted the necessity of incorporating
temporal information along with spatial features for learning
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sequential HRI tasks. In this paper we propose the Temporal-
Reasoning-based Learning from Demonstration framework
(TR-LfD), which is a holistic framework for learning se-
quential HRI tasks (such as RMI) from observations.

The proposed TR-LfD is a layered architecture where a
Temporal Reasoning Layer (TRL) learns interval temporal
relations (ITRs) among discriminative spatial features ex-
tracted by a Spatial Reasoning Layer (SRL). ITRs are defined
according to Allen’s interval temporal Algebra [12]. Learning
the temporal structure of a task from demonstration data
helps to narrow down the action-space while selecting policy
during the real-time execution of a task. We validate the
performance of the TR-LfD in learning a RMI for teaching
social skills from video observations and show that the
policy learning performance improves when the temporal
information is leveraged. To the best of our knowledge, this
is the first work that employs interval temporal Algebra
to incorporate temporal reasoning for learning LfD policy.
A layered architecture integrating fully automated spatial
and temporal reasoning is another novel aspect of the work
proposed in this paper.

II. RELATED WORK

This section reports low- and high-level LfD research that
learned policies of HRI tasks while considering spatial and/or
temporal features. The work described in [13] introduces an
end to end deep reinforcement learning approach that was
employed to learn a basic social interaction from raw demon-
stration data. This model, however, was designed to learn an
interaction with simple temporal dynamics in which policy
selection could be executed without performing temporal
reasoning. In [11] the authors introduce a deep reinforcement
learning framework capable of learning a structured human-
robot interaction. This framework, although proficient in
learning spatial reasoning, failed to learn the underlying
temporal rules that govern the interaction.

Several frameworks have been proposed in the low-level
LfD literature to incorporate temporal information in the
policy derivation process. In [14] a Hidden Markov Model
(HMM) was employed to construct skill trees that capture the
sequence in which events take place in a task. Similarly, the
LfD framework described in [15] learns finite state machines
that model the temporal relationships between the events of a
task. Meanwhile, the work in [8] introduces influence graphs
to model the sequence of events needed to complete a task.
None of these works, however, performs spatial and temporal
reasoning in an integrated manner. Also, no existing work



Relation Notation Graphical Representation Inverse
Before X{b}Y X Y Y{bi}X
Equals X{e}Y — Y{e}X
Overlaps X{o}Y Y{oi}X
Starts X{s}Y Y {si}X
During X{d}Y Y{di}X
Finishes X{f}Y Y{fi}X
Meets X{m}Y Y{mi}X

Fig. 1. Set of interval temporal relations that can exist between two events.
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Fig. 2. (a) ITBN model for an activity in which X can happen before or
during Y (X {b,d}Y). (b) BN representation of the ITBN shown in (a).

has considered interval Algebra to model the wide range of
temporal relations that typically exist in HRI tasks.

III. PRELIMINARIES
A. Interval Algebra

Complex activities are composed of several events, each
defined by a start and a stop time. During the execution of an
activity, events can happen simultaneously or in a sequential
manner, creating temporal relations and constraints between
the events. Allen and Ferguson [12] proposed a set of 13
atomic interval temporal relations that can exist between a
pair of events and limit the order in which events can take
place in an activity (Fig. [I).

B. Interval Temporal Bayesian Networks

Interval Temporal Bayesian Networks (ITBN) are prob-
abilistic graphical models designed to model the interval
temporal relations that exist between the individual events
that constitute a complex activity [16]. This is accom-
plished by combining Bayesian Networks (BN) with Interval
Algebra. BNs are graphical models capable of capturing
conditional dependencies among random variables using a
directed acyclic graph. In an ITBN, each event of an activity
is represented by a node in the graph. Meanwhile, each of
the edges represents the existence of a temporal relationship
between the two events it connects. In an edge that goes from
event X to Y, X is the temporal reference of Y, meaning
that Y has a temporal dependency on X (Fig. [2).

Zhang et al. [16] proposed algorithms to perform structure
and parameter learning on ITBNs. They implemented an
ITBN as a BN by introducing a new set of nodes to represent
the temporal relationships between two event nodes (Fig
[2). This approach allows ITBNs to perform inference using
existing BN algorithms.

Structure Learning: This process learns a graphical model
that captures the spatio-temporal dynamics of an activity
using a training dataset. First, the interval temporal rela-
tionships that exist between all the events of an activity are
learned using the concept of temporal distance:

d(Qy,Qx) = (sy —sx,ey —ex,sy —ex,ey —sx) (1)

where X is the temporal reference of Y and 2 represents
a tuple [s,e| containing the start (s) and end (e) times
of an event. The temporal distances for every possible
pair of events are then mapped to the atomic temporal
relations listed in Fig. E} Afterwards, an iterative local
search procedure [17] is used to generate new candidate
networks. These structures are evaluated using the Bayesian
Information Criterion (BIC) [18] to select the one that best
fits the training data.

Parameter Learning: This process involves finding a
maximum likelihood estimate for the parameters of a model
from the training data. The algorithm is analogous to the
parameter learning process of a BN, with the exception that
along with learning the conditional probability for each event
node, it is necessary to learn the conditional probability for
the temporal relation nodes of the model [16].

IV. TEMPORAL-REASONING-BASED
LEARNING FROM DEMONSTRATION (TR-LFD)

TR-LfD is proposed specifically to learn sequential HRI
tasks. To better understand the reality of such tasks, let us
take as example a standard RMI [19], [20]. Here a robot
executes a certain action a (typically through tele-operation)
and waits for responses (r) from the child. A positive
response from the child causes the robot to trigger a follow-
up action (typically a reward, R), while a negative response
triggers a different follow-up action (typically a feedback, F')
before the robot formally ends the interaction (e). Thus, the
most primitive structure of this sequential HRI task can be
described as follows: a — r — R or F' — e. This primitive
structure can be used to learn any arbitrary RMI or other
ritualistic HRI tasks while using task-specific definitions for
a,r, R, ' and e. More complicated interactions can also be
defined using this primitive structure. The objective of TR-
LfD is to learn this primitive interaction structure from video
based observations.

Despite its simplistic appearance, learning this structure
from video observations is a complex problem for various
reasons. For example, the discriminatory state features may
vary due to its human component: different people may
execute the same interaction in slightly different ways, and
positive/negative responses may be manifested in different
ways among different participants, etc. These perceptual
uncertainties directly affect state identification and, in turn,
policy learning [2]. Using hand-picked features or hard-
coding every interaction, therefore, is inefficient, if not
impossible.

A TR-LfD uses deep convolutional neural networks
(CNN) and the temporal information of observed events to
learn state features and employs an ITBN-based model to



robustly learn the task’s policy (i.e. the state-action pairs).
These components are integrated using a layered architecture.
A diagram showing the TR-LfD is shown in Fig.

A. Demonstration Data Processing

A number of pre-processing steps on the demonstration
data are required for policy learning through TR-LfD. A
demonstration set for the HRI task to be learned needs to
include start- and end-times of all atomic actions in the task.
Here atomic actions refer to meaningful events that constitute
the entire task. For example, in the contect of RMI, every
action and response of the robot and the human is an example
of an atomic action. Segmenting a demonstration into a set of
atomic actions performed by the robot and identifying their
start-end times are relatively trivial steps when the data is
collected through tele-operation. Identifying the exact start-
end times for responses/actions performed by humans how-
ever, is non-trivial and requires special application-specific
algorithms. Similarly, when demonstrations are not collected
through tele-operation, autonomous segmentation algorithms
can be applied to extract atomic actions and their start-end
times. For example, the research in [21] and [22] present
segmentation techniques for low- and high-level LfD tasks,
respectively.

B. Spatial Reasoning Layer (SRL)

The SRL layer of the TR-LfD consists of a set of
multi-class classifiers that learn to classify video frames
into three perceptual classes: actions performed by robots
(ROBOT), responses/events triggered by humans (HUMAN),
and events/action that are neither triggered by humans nor
performed by the robot (NULL). The atomic actions that
constitute the HRI task therefore fall under one of these three
classes.

We built on our previous work [23] to propose a con-
volutional neural network (CNN)-based SRL. The proposed
SRL has multiple independent CNNs, each dedicated to
process one input modality, e.g. audio, RGB frames, optical
flow, depth, etc. Independently operating CNNs allows the
SRL to learn relevant features from each modality without
the potential of over-fitting to one specific input source.
Fig. [3] shows an example SRL with two CNN architectures
designed to process spectrogram (generated from audio data)
and optical flow inputs. Each CNN architecture consists of
standard convolutional layers, a long-short term memory
(LSTM) layer and a fully connected (FC) layer. The LSTM
layer helps to learn patterns that may be present in the
input and that can improve the classification performance.
State-of-the-art parameter tuning techniques can be used to
choose the values of different parameters (such as filter size,
stride, number of filter, the number of output classes, etc),
depending on the type of input being used. The CNNs in
Fig. |3| show standard choices for different parameter values.

The CNNs in a SRL use a sliding window approach to
process the input frames. In this approach, as shown in Fig.
the window size indicates the number of frames included in a
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Fig. 3. CNN-based SRL to process image and spectrogram (from audio)
data. The size of the filters (F), stride (S), number of filters (N) and output
size (O) are design parameters defined based on the type of inputs. Some
standard parameter choices are shown here.
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Fig. 4. Labels are assigned to each window depending on the ITRs that
exist between them and the different atomic actions (red and blue in the
timeline) belonging to a class.

window, and the frame stride is the number of frames skipped
between adjacent windows. The label for each window is
determined based on the ITRs it may have with any of the
atomic actions observed so far in the interaction. Equation
is used to calculate the temporal distance between a given
window and other atomic actions present in the task, to
identify the presence of ITRs. A window is defined to belong
to a class a during, overlaps, starts, finishes or equals
ITR existed between the window and an atomic actions in
that class (Fig. @). The HUMAN class is given priority in
this process when a window can belong to more than one of
the classes.

C. Temporal Reasoning Layer (TRL)

During training, the TRL of the TR-LfD learns and en-
codes the underlying temporal dynamics among the different
atomic actions, along with their approximate start-end times.
During policy execution, the TRL leverages the learned
temporal structure to analyze the observations (i.e. the class
label) determined by the SRL and, when needed, select the
action that will be executed next. TRL triggers actions under
one of the two conditions: a pre-learned waiting period has
been elapsed or a change of state has been detected in the
environment.

The core of the TRL is an ITBN reasoning model (ITBN-
RM). The ITBN-RM expands the capabilities of a standard
ITBN by capturing the waiting period between two events
and maintaining an open list to facilitate the inference
process. In this context, an open list refers to a list of states
that can be reached from the current state. The ITBN-RM is
formally defined as

ITBN — RM, G = (S,,, T, S;) )

Where S, is the set of starting nodes and 73, is the set of
terminal nodes. Meanwhile, S; is the current state of the task



Algorithm 1 Policy Selection in ITBN-RM
Input: obsg.;, Ws, We
Qutput: a1
initialize: Og <+ 0, T, < 0, as_1 < 0
1: if a;_; = () then
2 at41 < Sy,
3: else
4:  obs < processObservation(obs)
5. if obs = NULL and w = 0 then
6
7
8
9

obs + ROBOT
end if
: agq1,w < inferNext(obs, O, Ty,)
: end if
10: if a;_1 75 Q41 then
11: O, = updateOpenList(as41)
122 T, T4 U (a1, Ws, We)
13: A1 < Q41
14: else
15:  updateEndTime(7,, a;—1, We)
16: w4+ w-—1
17: end if
18: return a;yq

and is defined as
St == <OaaTa7at—l7w> (3)

where O, is an open list of atomic actions that can happen
in the remainder of the interaction, 7, are the times at
which different atomic actions have taken place, a;_; is
the last atomic action that was observed in the interac-
tion, and w is the time (in seconds) that the model will
wait before performing inference to select the next action
to execute. The graphical structure and parameters of the
ITBN-RM are learned from the temporal information of
different atomic actions available in the demonstration set.
The learning mechanisms for ITBN have been reported in
Section As a part of the structure learning phase, a set of
nodes labeled ‘ROBOT observation’ are attached to all non-
terminal atomic actions related to the robot agent and another
set of nodes labeled ‘HUMAN observation’ are attached
to actions/responses related to the human participant. This
labeling simplifies policy selection as discussed below and
will be further explained in Section

During execution, the ITBN-RM is used to select the
action that will be performed next in the intervention. Algo-
rithm [T] outlines this policy selection process. This algorithm
takes as input the observations generated by the SRL (0bsg,;)
and the start-times (W) and end-times (IW,) of the input
window that generated those observations. The value of the
observation nodes (ROBOT observation/HUMAN observa-
tion) for the ITBN-RM (obs) is decided based on obsg,;
(line 4). The ITBN-RM leverages the temporal information
contained in S; to analyze the values of obs and perform
policy selection (line 8). The event times included in Tj,
are used to calculate the interval temporal relations between
past events and an event that has been detected by the SRL.

The temporal relation, along with O,, are then used in the
Bayesian inference process of the ITBN-RM. The ITBN-RM
also learned the duration of the delays that may exist between
different atomic actions from the demonstration set. This
information is used during the inference process to decide
when to execute the next action in an automated intervention
(line 5). To select the next action, the ITBN-RM triggers
the ROBOT observation node (line 6) and then infers the
appropriate action to execute based on the current state of
the intervention (line 10). The ITBN-RM is implemented
using the Python package for graphical models, pgmpy [24].

V. EXPERIMENTS
A. Evaluation Domain

We evaluated the performance of the TR-LfD in learning
an applied behavior analysis (ABA)-style RMI to teach a
basic social skill (of responding to a greeting in a socially ac-
ceptable manner). ABA, a proven methodology for designing
behavioral intervention to teach elemental skills to children
with autism, suggests a very structured interaction between a
child and the teacher which is advantageous from an LfD per-
spective. Our previous work evaluated the clinically-oriented
effectiveness of this particular intervention to teach this
social skill to children with autism through a tele-operated
robot [25]. In this work, we evaluate the performance of the
proposed TR-LfD in learning this intervention from video
observations and reproduce it autonomously with different
participants.

During the intervention a teacher and a child learner go
through a series of structured interactions with the purpose
of teaching the child how to respond to a greeting in a
socially acceptable manner. The intervention begins with
the teacher delivering a discriminative stimuli (SD) where
the teacher greets the child by saying “hello” and waving
at him/her. The child may respond (RESPONSE) verbally
and/or wave his/her hand. If the child does not provide an
appropriate response, the teacher proceeds by delivering a
prompt (PROMPT), which shows the child how to respond
in a socially acceptable manner, e.g. “John, say hi to me”. If
the intervention is failing to be productive, the teacher can
decide to abort the session (ABORT). If the child provides
an appropriate response, the teacher concludes the session
by giving a verbal reward (REWARD) to the child, such
as “Great job!”. In the context of the primitive interaction
structure discussed in Section a: SD, r: RESPONSE, R:
REWARD, F: PROMPT, and e: ABORT.

B. Demonstration Data and Pre-processing

An IRB-approved user study was organized to collect
demonstration data. In the user study, a NAO humanoid robot
was tele-operated to deliver the ABA-based intervention
described above. The setup used during the data collection
sessions can be observed in Fig. [5(a)] The robot performed
the following four actions in the role of a therapist: SD,
PROMPT, REWARD and ABORT. Six college students (4
male, 2 female) without autism participated in the study.
Before starting the study, participants were made aware



that the robot was being tele-operated. Each participant was
requested to complete a set of 18 interactions with the tele-
operated robot emulating a compliant or non-compliant state.
In 12 of the sessions the participants emulated a compliant
state by providing an appropriate response to the robot, thus
ending the session successfully and receiving a verbal reward
from the robot. In the remaining 6 interventions, participants
emulated a non-compliant state, meaning they did not pro-
vide a valid response to the robot. The participant responses
consisted of different combinations of gaze, gestures, and
audio, as defined below:

o Gaze: maintaining eye contact with the robot (Re-
sponses consisting of only gaze were not considered
valid in this user study.)

o Gesture: responding to the robot with a waving gesture.

« Audio: acknowledging the robot with a verbal response,
e.g. “hello”.

The different combinations of valid responses were kept
balanced by indicating the participants which response they
should use when emulating a compliant state. The demon-
stration data also included the temporal information (start and
end times) of the atomic actions. The temporal data for the
SD, PROMPT, REWARD and ABORT actions was available
from the tele-operation logs of each session. Meanwhile, the
timing information for the participant’s responses were hand-
labeled by the first author of this work. The labeling process
consisted of analyzing the video and audio that preceded
a REWARD action, to find the start and end times of a
response. Timing information for auditory responses was
initially obtained by processing the data set with speech
recognition software. These times were identified manually
in instances where the verbal response was not recognized
by the software. The collected data set had a total of 189
demonstrations. All the sessions included the SD action, but
only 133, 112, and 77 included the PROMPT, REWARD
and ABORT actions, respectively. From the successful inter-
actions, 74 contained gestural responses and 75 had auditory
responses. An evaluation data set was created by randomly
selecting 25% of the demonstration videos.

All video and audio data were recorded using the camera
and microphones available on the NAO robot. The image
feed is recorded with the robot’s main camera, which pro-
vides 640 x 480 images at a rate of 15 frames per second.
These images are cropped to be 299 x 299 pixels in size
and are centered on the participant’s face using a Haar
Cascade classifier trained on human faces. Frames in which
a face cannot be detected are cropped using the center of the
original image as a reference point. The resulting images are
then resized to 64 x 64 and converted to gray-scale. Finally,
an optical flow image for each frame is generated using the
change detection method described in [26]. The frames of
the video are then collected into an array F. Audio data
is pre-processed using a combination of spectral subtraction
and FIR filters to reduce the audio signal’s background
noise. The smoothed data is subsequently converted to a
Mel-Spectrogram in order to provide a two-dimensional
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Fig. 5.
learning social greeting intervention.

(a) Physcial setup for user studies, (b) TR-LfD framework for

representation of the data [27]. Finally, the resulting image is
split into an array of frames (A) equal in length to the number
of frames in F'. Each of the frames in A has dimensions
128 x 8 and contains columns from the previous frame in
its first two columns and columns from the next frame in its
last three columns, to generate a better representation of the
entire audio signal and capture relevant patterns.

C. Spatial Reasoning Layer (SRL)

We used two independent CNN to define the SRL, one to
process F' and the other to process A. The two CNNs shown
in Fig. 3| have been used to define the SRL and are discussed
below with greater details.

Audio CNN: The input of the model for the auditory
network (Acnn) is A, the visual representation of the
recorded audio. For the training process, a grid search
approach was used to find the window size and frame stride
that maximized the number of windows that contain an
entire audio response from across the entire training dataset,
without impacting the training time of the CNN. As a result,
the window size parameter was set to 20 frames and the
frame stride had a value of 7. To simplify the model, the
SD, PROMPT, REWARD, and ABORT actions were grouped
into the ROBOT class. The number of training examples
of each class was balanced by omitting excess windows
belonging to the more common classes (ROBOT and NULL).
The omitted windows were randomly selected.

Optical Flow CNN: The optical flow CNN (Fon ) uses
F' as its input. During training, the window size and frame
stride parameters were set to 45 and 20 frames respectively.
As in the case of Acny, the values of these parameters
were selected using a grid search approach. The ROBOT
class captured the ambient movement caused by the waving
motion of the robot when performing the SD and PROMPT
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Fig. 6. ITBN-RM learned from demonstrations. The start node of the model
is marked with a double line, terminal nodes are marked with a thick line
and observation nodes are shaded.

actions. Meanwhile, the REWARD and ABORT actions were
excluded from this CNN as they did not trigger any motion
from either of the participants in the intervention. The same
approach used in the training of Aoy for the balancing of
training examples was used for Fon .

D. Temporal Reasoning Layer (TRL)

Fig. shows the entire TR-LfD framework for the
experiment. The ITBN-RM learned from the demonstration
data is shown in Fig. [6] The interval temporal relations in
this model can be read as follows: dependent node, followed
by the temporal relation, and then the reference node. For
example, the relationship ‘prompt —; response’ can be read
as “a response follows a prompt”. The ROBOT observation
nodes are triggered when the Aoy classifies a window
as a ROBOT action. Meanwhile, the HUMAN observation
node is triggered if either the Aoy or the Fonpn classify
the window as a HUMAN action. Agyy is given priority
in this process because the REWARD and ABORT actions
do not trigger the Fon . To reduce the number of false
positives during execution, the ITBN-RM was configured to
require two consecutive observations to accept the detection
of a HUMAN class.

A brief example of the policy selection process using
the ITBN-RM of Fig. [] is illustrated in Fig. [7] In this
example, the first window, w; (red frame), consists of the last
20 frames of video corresponding to an SD atomic action.
Both Acnyy and Fonpn classify w; as a ROBOT action,
triggering the ROBOT observation nodes of the ITBN-RM.
In the graphical representation of the ITBN-RM for w, the
current atomic action is shaded with green, actions that can
still happen in the intervention are white and the inferred
atomic action for the current window is marked with a red
line. After 7 more frames are received from the robot, a
second window, ws (green frame), is processed. In this case,
the Fonn classifies the window as a HUMAN action, so
the HUMAN observation node is triggered in the ITBN-RM.
Using this observation, the ITBN-RM infers that the window
belongs to a RESPONSE action and updates the state of the
model. Now, atomic actions that have already concluded are
shaded with yellow and atomic actions that cannot happen
in the session are shaded with gray. Afterwards, a set of
HUMAN action windows are received and processed by the
ITBN-RM, for simplicity these are not included in the figure.
Finally, 3 seconds after the RESPONSE action ends, window

wy, (blue frame) is processed. In this window, the ITBN-RM
performs inference and selects REWARD as the next atomic
action to execute, thus ending the interaction.

VI. RESULTS
A. Simulation

The learning capabilities of the framework were tested in
simulation using the training and evaluation data sets. The
window size and frame stride parameters of the CNN models
were set to 20 and 7 frames, respectively, using the values
used during training as reference.

The evaluation dataset was used to execute two different
simulated experiments on the framework. The first one,
aimed to evaluate the individual performance of each CNN
when used to classify the windows of the evaluation set.
The results, which are shown on Fig. @ confirm that both
models of the SRL were able to generalize and use the
learned features to classify novel windows with an accuracy
of over 92%. Moreover, even though the classification rate
of Acnn for the HUMAN class was only 83.72%, a more
thorough inspection revealed that all the false negatives were
late detections. This means that the first HUMAN action
window of an event was not classified correctly, but the
subsequent windows were. Therefore, during the delivery
of an intervention, the event would be recognized with a
negligible delay or, in most cases, no delay at all.

In the second experiment, the TRL was used to infer which
atomic action was taking place in each window given the
observations provided by the SRL and the current state of
the ITBN-RM. Since in this use case the SD atomic action
is the only start node, the first atomic action by the robot
recognized by the SRL was assumed to be the SD. First,
the whole framework was evaluated on the 139 training
demonstrations, achieving a performance of 98.56% at the
session level (two failed sessions). At the atomic action
level, the model achieved a perfect performance for the SD,
PROMPT, and ABORT atomic actions and a performance of
97.59% on the RESPONSE and REWARD atomic actions.
Then, the experiment was repeated using the evaluation set,
with a performance of 97.48% (2 of 50 sessions failed). Once
again, the model was able to achieve a performance of 100%
on the SD, PROMPT, and ABORT atomic actions. The two
failed sessions were caused by false positives reported by the
Acn . From the results of this experiment it is important
to highlight that, even though the CNNs misclassified a total
of 184 windows on the first experiment described above, the
TRL was able to use its knowledge of the temporal dynamics
to reduce the number of failed sessions to only two.

B. Experiments with Human Participants

To fully evaluate the learning capabilities of the frame-
work, a new IRB-approved user study was conducted. The
setup and structure of the intervention were the same de-
scribed in section [V-A] In this study, however, the behavioral
intervention was delivered autonomously by the robot. Six
college students (5 male, 1 female) without ASD participated
in the study and were made aware that the robot was acting



w (frame 0) wy (£7) wy (f 0-20)
Acu: ROBOT '
Feuy: ROBOT (52 )a{(PurT)
| ITBN-EM: ROBOT @
w1 (£20) Wy (£7-27)
Ay NULL (0
o - - - - - - [} (] [ -
L g e e e g e g g —— -
W, W,
- - - - - A ROBOT &
10440 8 i 44y e — ey e
LALALBLASALDD b B b et SO0 oy PR et SO gy B TTENRA: ROBOT

Fig. 7.

Graphical description of the policy selection process executed by the ITBN-RM. In the graphical representation of the state the current event is

marked with green, possible future events are white, events that can no longer take place are gray, events that have already concluded are yellow and the

event inferred for the current window is marked with a red line.
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Fig. 8. CNN performances on validation data set.

autonomously. None of the participants had taken part of the
data collection study. Each participant completed a set of 18
interactions that included different combinations of audio and
gesture response, as well as instances in which no response
was provided.

This experiment was executed using the policy selection
routine described in Algorithm [T} An automated intervention
started with the robot executing the SD action (line 4),
as it is the only start action in the ITBN-RM. Then the
robot would act according to the participants reaction. If no
appropriate response was given, the robot would wait before
selecting the next action, following the behavior observed in
the training set. Similarly, if a valid response was received,
the robot waited for a short period before triggering the next
action. These wait periods were learned from the temporal
information of the data set. The interventions continued until
a terminal action (REWARD or ABORT) was executed by
the robot.

In this experiment, 84.26% of the automated interventions
were successful (91 successful, 17 failures). An intervention
was considered successful if the model allowed the robot to
react in accordance to the actions of the human participant
and the state of the intervention until the REWARD or
ABORT actions were executed. A total of 11 failures were
caused by the misclassification of a ROBOT action by the

TABLE I
ACCURACY ON AUTOMATED INTERVENTIONS

Responses

Gaze | Gestural | Auditory | TR-LfD | DR-LfD
No No No 94.4% 95.8%
No No Yes 100% 75.0%
No Yes No 91.7% 25.0%
No Yes Yes 83.3% 68.8%
Yes No No 94.4% 87.5%
Yes No Yes 91.7% 81.3%
Yes Yes No 100% 6.3%
Yes Yes Yes 100% 37.5%

Total 94.4 % 67.8%

Acn . Table ] shows the performance of the framework at
selecting the correct action after different combinations of
human responses. The accuracy in this table represents the
percentage of responses that were followed by the correct
action by the robot. In addition, this table also includes the
results obtained by our previous Deep Reinforcement LfD
(DR-LfD) approach [23] on the same ABA intervention. A
demonstration video of the performance of the system can
be found at https://goo.gl/veo9HLt.

A questionnaire was completed by the participants of the
evaluation user study. The questions asked them to grade
the performance of the automated robot and their overall
experience using a Likert scale with 5 meaning “strongly
agree” and 1 “strongly disagree”. The scores reflect that the
robot learned to react correctly according to the actions of the
participants (4.5 +0.5) and that, even though the automated
intervention did not feel natural (3.5 4= 1.0), interacting with
the robot was easy (4.8 = 0.4) and enjoyable (4.3 £ 0.5).
Nevertheless, we believe that the low score associated with
the naturalness of the interaction is a product of the highly
structured nature of the intervention.

VII. DISCUSSION

The performance of the TR-LfD framework on the eval-
uation set shows that the proposed approach is capable of


https://goo.gl/veo9Ht

learning sequential HRIs from a relatively smaller number
of training demonstrations. This is in part because the use of
a TRL allows the simplification of the models in the SRL.
The results illustrate the capacity of the TR-LfD to leverage
the underlying temporal dynamics of the task to perform
temporal reasoning, even in cases when the SRL provided
incorrect observation values. This can be observed by com-
paring the results of the two simulated experiments. In the
first of these experiments, close to 5% of the windows were
misclassified. However, by using the learned temporal rules
and constraints of the interaction, the TRL can minimize the
effect of the misclassified windows, achieving a performance
of 98%. Lastly, it is relevant to point out that the proposed
approach outperforms the accuracy of the DR-LfD by 26.6%.
This difference further confirms the advantages of leveraging
temporal reasoning in a LfD framework.

VIII. CONCLUSION

This paper presents the TR-LfD, a novel Temporal-
Reasoning-based LfD framework that has been proven ca-
pable of learning a sequential human-robot interaction from
demonstrations. The framework relies on an SRL that ex-
tracts the discriminative features of the different states of
a task and a TRL that derives and leverages the temporal
dynamics of the task. The framework was evaluated with
a use case consisting of a robot-mediated intervention. The
results confirm that the framework is capable of learning and
automating sequential human-robot interactions, even when
trained with a small number of demonstrations. These results
suggest that temporal reasoning will be key when deploying
automated robotic agents on applications that require human-
robot interactions.

Future work will explore the use of more complex tem-
poral reasoning approaches, capable of modeling recursive
events in an interaction. Additionally, the possibility of
implementing video segmenting techniques to replace the
hand-labeling stage of the data collection process will be
researched. These improvements will allow the framework
to be fully automated and more generalizable.
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