
Leveraging Temporal Reasoning for Policy Selection in
Learning from Demonstration

Estuardo Carpio, Madison Clark-Turner, Paul Gesel, and Momotaz Begum

Abstract— High-level human activities often have rich tem-
poral structures that determine the order in which atomic
actions are executed. We propose the Temporal Context Graph
(TCG), a temporal reasoning model that integrates probabilis-
tic inference with Allen’s interval algebra, to capture these
temporal structures. TCGs are capable of modeling tasks with
cyclical atomic actions and consisting of sequential and parallel
temporal relations. We present Learning from Demonstration
as the application domain where the use of TCGs can improve
policy selection and address the problem of perceptual aliasing.
Experiments validating the model are presented for learning
two tasks from demonstration that involve structured human-
robot interactions. The source code for this implementation is
available at https://github.com/AssistiveRoboticsUNH/TCG.

I. INTRODUCTION

Complex high-level tasks are typically composed of sev-
eral atomic actions. The order in which these actions are
executed is governed by a temporal structure that must
be learned to develop a holistic model of the task. These
temporal structures can be beneficial in domains such as
learning from demonstration (LfD), where a task needs to
be learned and replicated by a robotic agent. Specifically,
the temporal structure of a task can be employed to perform
policy selection and can be leveraged to address instances of
perceptual aliasing [1]. The problem of perceptual aliasing
occurs when two or more states that should lead to different
actions generate the same set of perceptual information [2].
Perceptual aliasing has a negative effect in LfD, as it causes
the model to confound task states that must be differentiated
to learn an accurate policy.

LfD is a popular robot learning paradigm that derives task
policies from the demonstrations of a lay user [3]. In the
context of LfD, a policy is the mapping between the state of
the world and the actions a robot should perform to complete
a task. LfD has been widely used to learn policies for low-
level tasks such as obstacle avoidance [4], assembly tasks
[5], and tool handling [6]. Similarly, there has been work
focused on applying LfD to learn high-level concepts and
tasks such as object sorting [7], cooking related tasks [8], [9],
and the delivery of a robot-mediated educational intervention
[10]. Both in high and low-level LfD, tasks are completed
by following its latent temporal structure to accomplish a
goal. However, the vast majority of LfD frameworks create
policies by focusing on the spatial features of a task, failing
to take advantage of the implicit temporal structure that
defines it.

Authors are with the Cognitive Assistive Robotics Laboratory, University
of New Hampshire, Durham, NH 03824, USA {erp48, mbc2004,
pac48, mbegum}@cs.unh.edu

In this paper we introduce the Temporal Context Graph
(TCG), a graphical model that integrates the temporal seman-
tics of Allen’s interval algebra [11] with the probabilistic na-
ture of n-gram models [12] to capture the temporal structure
of a task. The combination of these elements makes TCGs
capable of learning temporal structures with cyclical atomic
actions and sequential and parallel relations. TCGs can be
used in LfD frameworks to perform temporal reasoning
and limit the action-space of the robotic agent, simplifying
the policy selection process and addressing the issue of
perceptual aliasing. We validate the performance of TCGs
in two high-level LfD tasks.

II. RELATED WORK

Different graphical models have been explored in the LfD
literature to incorporate temporal information in the policy
selection process. For example, the work reported in [13]
employed a Hidden Markov Model (HMM) to construct skill
trees that implicitly encode the sequence in which atomic
actions are executed. The work in [14] proposed learning
a sequence of temporal constraints that could be used by
a high-level planner during execution. A similar algorithm
is presented in [15], where tasks precedence graphs are
introduced to encode spatio-temporal constraints between
atomic actions. The work in [8] proposed influence graphs
to model the sequence of actions needed to complete a task.
These graphical approaches, however, are not capable of
modeling tasks with repetitive atomic actions.

The LfD framework described in [16] constructs finite
state machines to model the temporal relationships between
atomic actions. Similarly, advanced sequence graph learning
algorithms have been proposed in [17] to model tasks with
repetitive actions. These models use multi-class classifiers to
learn and control state transitions, which allows them to learn
repetitive atomic actions. Nevertheless, this design makes
them prone to fail when faced with perceptual aliasing.

The model in [18] employs an extension of the Hierar-
chical Dirichlet Process HMM (HDP-HMM) to address the
problem of perceptual aliasing by learning a function that
can provide multi-valued mappings. Then, a set of perceptual
data that triggers a perceptual aliasing issue can map to
multiple states, from which the HDP-HMM model selects the
one with highest likelihood. In [19], the authors introduced
the IBP (Indian Buffet Process) Coupled SPCM (Spec-
tral Polytope Covariance Matrix) CRP (Chinese Restaurant
Process)-HMM (ICSC-HMM), a Bayesian non-parametric
model that prevents perceptual aliasing by identifying and
learning sub-goals that encode key temporal dependencies

https://github.com/AssistiveRoboticsUNH/TCG


Fig. 1. Set of ITRs that can exist between two actions. The orange and
green rectangles indicate the temporal relations that can be captured by
point-based and interval-based temporal reasoning models respectively.

in the task. These models [18], [19], leverage temporal
reasoning to deal with repetitive actions and perceptual alias-
ing. However, these approaches can only recognize point-
based temporal features, meaning that they can only model
three sequential temporal relations, namely before, after, and
equals. This limitation makes it impossible for them to learn
holistic models of tasks in which temporal relations other
than the three point-based ones are present.

The Temporal Context Graph proposed in this paper is a
novel way of learning complex temporal structures present
in high-level tasks. TCGs employ Allen’s interval algebra
to encode the interval temporal relations (ITR) among the
atomic actions of the task. These ITRs are then used to
train an n-gram model that learns the dependencies between
the state transitions and the temporal context of the task.
This probabilistic approach is capable of handling cyclical
atomic actions and can be leveraged to address instances
of perceptual aliasing. To the best of our knowledge, this
approach is the first to propose an interval-based temporal
reasoning model capable of learning tasks with repetitive
atomic actions.

III. PRELIMINARIES

A. Interval Algebra

Complex tasks can be decomposed into a set of atomic
actions. Each of these actions takes place over an interval
of time that is defined by its start and end times. Allen
and Ferguson [11] identified a set of 13 atomic interval
temporal relations (ITR) that can exist between a pair of
actions. These ITRs define and limit the order in which
atomic actions take place during a task and can be used to
create a model of its temporal dynamics. Employing interval
algebra allows TCGs to model all the atomic ITRs, while
point-based temporal models [18], [19] can only capture
sequential temporal relations (Fig. 1).

B. N-grams

N-grams [12] are a popular sequence modeling tool in
the field of natural language processing. N-gram models are
utilized to simplify inference processes by using a predefined
number of past states to select the future one. The number of
past states that are used in the inference process is defined as
N−1 where N is the order of the n-gram. These models have

been employed in speech recognition [20], text categorization
[21], and sentence completion [22]. In a TCG model, n-
grams are used to perform policy selection based on the
current temporal context of the task, addressing the issue
of perceptual aliasing.

IV. TEMPORAL CONTEXT GRAPH

A. Model Description

TCGs are temporal reasoning models capable of encod-
ing the temporal structure of a task. This is achieved by
identifying the ITRs present among the atomic actions of
the task and using them to learn state transitions and their
dependencies on the current temporal context of the task.
The temporal context of a task is defined as the set of actions
and observations that have taken place from the start of the
execution of the task to the current point in time.

A TCG for a task is a directed graph for which each node
represents a state of the task and edges represent internal
or external events that, combined with the current temporal
context, trigger a transition between two states. Accordingly,
the TCG for a task can be formally defined as

TCGT = {N,E, P} (1)

where N is the set of nodes that constitute the task, E
is the set of edges connecting the nodes in N , and P is
a probabilistic n-gram model that encodes the transition
probabilities between two nodes in N . The set of atomic
actions of a task is used to create the nodes and edges in
a TCG. Actions that generate a node are referred as non-
transition actions while actions that spawn an edge in the
model are called transition actions. An atomic action is
defined by a quartet {l, st, et, τ} where l is a label used
to identify the action, st and et are the start and end times,
respectively, and τ indicates whether or not the action should
be treated as a transition action.

Each node in a TCG consists of a quartet {α, δ, ωn,Ω}
where α represents the atomic action that should be executed
when the node is reached, δ indicates the duration of α, ωn

indicates the waiting period between the completion of α
and the execution of a timeout transition, and Ω indicates
whether or not the node is a terminal node.

An edge in a TCG consists of a quartet {ηo, ηd, ε, ωe}
where ηo and ηd represent the origin and destination nodes,
respectively, ε indicates the action that triggers the transition,
and ωe is the waiting period between the completion of ε and
the execution of the atomic action indicated in node ηd.

Node transitions in a TCG can be of two different
kinds, action transitions occur when an atomic action is
observed. Meanwhile, timeout transitions are triggered when
the waiting period ωn at a given node is elapsed without
observing a valid transition action. Transitions in TCGs are
conditioned by the current temporal context of the task. If
an incoming action observation cannot trigger a transition
given the current state and temporal context of the task, it is
considered an invalid action observation. These observations
are treated as false positives and are disregarded by the model
when performing temporal reasoning.



The state of a TCG at time t, St, is formally defined as

St = {nt, ωt, ε, c} (2)

where nt ∈ N represents the current node of the TCG, ωt is
the waiting period before a timeout is performed and the next
action is selected, ε is the action observed in the environment,
and c is a sequence of ITRs describing the current temporal
context of the task. The temporal context c and the current
action observation ε are leveraged by the n-gram model P
to perform inference during policy selection.

B. Learning a TCG

The structure and parameters of a TCG are learned from a
demonstration set, D. Each demonstration in D consists of a
set of atomic actions, their respective start and end times and
a flag indicating if they are transition actions. For an LfD
task, such a demonstration set can be created autonomously
by employing segmentation techniques capable of identifying
the start and end times of the atomic actions that constitute
the task. For example, the research in [19] and [23] present
segmentation techniques for low- and high-level LfD tasks,
respectively. In an LfD task, the robot actions are marked as
non-transition actions because the TCG is learned from the
robot’s perspective.

The three stages of the TCG learning process are outlined
below and can be seen in Algorithm 1.

1) Structure Learning: The first stage of the TCG learning
process consists of learning the graphical structure for the
given task. The first step in this stage consists of sorting the
atomic actions available in the demonstration set, according
to their start times (line 3). The sorted action sequences of
each demonstration are then processed individually to learn
the graphical structure that represents the task. Nodes are
created for each distinct non-transition action (line 16), while
transition actions are used to create the edges connecting
those nodes (line 15). Additionally, timeout transition edges
are created when two consecutive non-transition actions
exist in a sequence (line 13). During this process the mean
duration and waiting periods for each atomic action are
learned and stored in the edges and nodes of the TCG (lines
17,19, 21). The output of this stage can be considered a finite
state machine that encodes the valid transitions between the
atomic actions of the given task.

Fig. 2 displays the TCG learning process for a toy problem
in which a set of two demonstrations (d1, d2) is provided
for a task. In this example, non-transition and transition
actions are represented by uppercase and lowercase letters,
respectively. Fig. 2(b) shows the TCG structure learned from
the set of demonstrations displayed in 2(a). Non-transition
actions A,B and C generate the nodes of the graph, while
the transition action x creates the edges that link the nodes
together. Additionally, a timeout transition (T/O) is added
due to the B → B transition in d1.

2) ITR Sequence Generation: The second stage consists
of generating a sequence of ITRs from the sorted sequence of
actions of each demonstration. This is achieved by calculat-
ing the temporal distance between every pair of consecutive

Algorithm 1 TCG Learning
Input: D
Output: TCG

1: initialize: N ← ∅, E ← ∅, P ← ∅, ITR← ∅
2: for d in D do
3: d← sort(d)
4: itr ← ∅
5: for a in d do
6: next← a.next
7: itr ← itr ∪ get itr(a, next)
8: if ¬ a.τ then
9: if next.τ then

10: next← next.next
11: transition← a.next
12: else
13: transition← Timeout
14: end if
15: E ← E ∪ edge(a, next, transition)
16: N ← N ∪ a ∪ next
17: N.update duration(a)
18: if transition == Timeout then
19: N.update timeout(a, next)
20: else
21: E.update timeout(transition)
22: end if
23: end if
24: end for
25: ITR← ITR ∪ itr
26: end for
27: ITR← itr factoring(ITR)
28: P ← learn ngram(ITR)
29: return TCG(N,E, P )

atomic actions (line 7). The temporal distance for two actions
x and y is defined as follows: (the symbols x and y are not
related to those in Fig. 2)

d(y, x) =
(
sy − sx, ey − ex, sy − ex, ey − sx

)
(3)

where x is the temporal reference of y, and s and e represent
the start and end times of an action, respectively. The results
of this operation are used to identify the ITR that exists
between the two actions [24].

3) Temporal Context Learning: The third, and final, stage
is the temporal context (c, in equation (2)) learning. There
are two steps in this process. First, the set of ITR sequences
is simplified using a process called ITR factoring (line 27).
This process consists of grouping together ITRs that share a
common temporal context and lead to a common state in the
task. ITR factoring is necessary to prevent the n-gram model
from becoming too sparse. Fig. 2(c) shows an example of the
ITR factoring process. The ITRs highlighted in green display
an example in which distinct ITRs (o, b) are grouped into a
single ITR factor (1), because they share a common temporal
context and map to the same task state (A). Meanwhile,
the ITRs marked in red show a case in which two ITRs
(fi, b) create two distinct ITR factors (3, 7) because, even



Fig. 2. An example of TCG learning process. (a) The demonstration set
used as input to learn the TCG model. (b) Graphical structure of the TCG
model learned from the demonstrations shown in (a). (c) Illustrates the ITR
factoring process. The left and right sides show the original and factored
ITR sequences, respectively.

though they share a common temporal context, they map to
a different task state (B and C respectively). The distinction
between the finishes (fi) and before (b) ITRs illustrated in
this toy example cannot be learned with the point-based
temporal reasoning models reported in [18], [19].

The second step consists of learning a probabilistic n-gram
model using the factored ITR sequences as input (line 28).
During the training of the n-gram model, the previous n− 1
ITRs of the sequence are used as the evidence to encode
the temporal context that generates the action executed in
the n-th ITR. The resulting n-gram model encodes all the
observed temporal contexts; therefore, it can be leveraged
during policy selection to address the issue of perceptual
aliasing. This is possible because the actions selected by the
n-gram model will be dependent on the current temporal
context of the task.

C. Policy Selection Using a TCG

The policy selection process in a Temporal Context Graph
consists of two phases that are executed at each time step.
The first phase updates the state (St) of the TCG with
the latest transition action (St.ε) that is observed in the
environment. Meanwhile, the second phase is used to verify
if a node transition needs to be triggered, prompting the TCG
to select the next action to be executed (nt+1). This process
is shown in Algorithm 2.

The first phase starts when a new transition action is ob-
served in the environment. At that time, the model evaluates
the possible transitions from the current node of the graph
and discards the action observation if a valid transition is not
found (line 2). If the action observation is valid, the timeout
(ωt) and transition action (ε) of St are updated (lines 3-4).

The actual policy selection occurs during the second
phase of the process. This phase is only triggered when the
state timeout (St.ωt) is reached (line 6). To select the next
action (nt+1) the TCG leverages the current temporal context
(c), which is utilized by the n-gram model to perform an
inference operation (line 7). After the next atomic action is
selected, the current node nt, temporal context c, and timeout
ωt of St are updated to reflect the current state of the task
(lines 11-13).

Algorithm 2 Policy Selection in a TCG
Input: P, St, t, ε
Output: nt+1

1: initialize: nt+1 ← ∅
2: if is valid obs(St.nt, ε) then
3: St.εt ← εt
4: St.ωt ← εt.ωe

5: end if
6: if t > St.ωt then
7: nt+1 ← P.evaluate(St.c)
8: if nt+1 == ∅ then
9: nt+1 ← Abort

10: end if
11: St.c← St.c ∪ get itr(St.nt, nt+1)
12: St.nt ← nt+1

13: S.wt ← nt+1.ωn + nt+1.δ + t
14: end if
15: return nt+1

V. EVALUATION DOMAIN

The performance of the TCG was evaluated using two
human-robot interactions (HRI) tasks. The tasks and the
user studies organized to collect the demonstration sets are
explained below.

A. Object Naming Intervention

The first use case consists of a robot-mediated educa-
tional intervention for children with autism spectrum disorder
(ASD). Mounting anecdotal evidence in the HRI literature
shows that robots may outperform human teachers in teach-
ing a wide range of basic skills to children with ASD [25].
To facilitate autonomous learning (by the robot) of the steps
of an educational intervention from the demonstration of
a human teacher, we are particularly interested in Applied
Behavior Analysis (ABA)-based interventions. ABA is well
known for its rigid structure and unparalleled success in
teaching basic skills to children with ASD [26]. Our previous
work designed an LfD framework to learn ABA-based social
greetings intervention from an expert’s demonstration [10].
In any ABA-based intervention, the interaction between
two agents (a robot teacher and a student) evolves in the
following way: COMMAND → Response (CORRECT or
INCORRECT) → PROMPT (if required) → REWARD →
ABORT. In this paper, we learn an object naming inter-
vention designed to improve the vocabulary of a child.
The intervention begins with a robot teacher delivering a
COMMAND by asking a participant to name an object
placed on the workspace and pointing at it. The participant
may stay silent or respond verbally with a CORRECT or
INCORRECT response. If the participant does not provide
a correct response, the teacher proceeds by delivering a
PROMPT that indicates the correct answer and invites them
to try again, e.g. “John, this is a basketball. Can you tell me
what this is?”. If the intervention is not being successful, the
teacher can provide more prompts or ABORT the session. If



(a) (b)

Fig. 3. Physical setup used for the (a) Object naming intervention (b)
Collaborative packaging task.

the participant provides an appropriate response, the teacher
concludes the session by giving a verbal REWARD to the
participant, such as “Great job!”. Our goal is to learn the
entire task from demonstrations.

In this intervention the robot can perform four actions:
COMMAND, PROMPT, REWARD and ABORT. In the
context of TCG, these actions are labeled as non-transition
actions. The only transition action is the response provided
by the human participant, which can be CORRECT or
INCORRECT. This intervention was selected as a validation
use case for three reasons. First, it presents a cyclical atomic
action (PROMPT), which in this design, can be executed
up to four times if a CORRECT response is not provided
by the participant. Second, it triggers multiple instances
of perceptual aliasing. Perceptual aliasing occurs when the
robot needs to decide if a PROMPT or ABORT action needs
to be delivered after receiving an INCORRECT response,
or no response at all, from the participant since both of
these responses are perceptually similar. Third, it has the
presence of parallel temporal relations because, in this de-
sign, participants can elicit responses that exhibit an overlaps
or during ITR with respect to a COMMAND or PROMPT
action executed by the robot.

An IRB-approved user study was organized to collect
demonstration data for this use case. A total of 11 subjects (9
male, 2 female) without ASD participated in the study. Each
subject was requested to engage in 10 successful interactions
(i.e. providing the CORRECT response at some point) and 5
unsuccessful interactions (i.e. never providing a CORRECT
response) with a tele-operated robot. Participants were asked
to provide at least 3 responses that exhibited the parallel
relations (overlaps or during). The participants were allowed
to choose the number of prompts they would like to receive
before they elicit a CORRECT response and whether they
wanted to provide an INCORRECT response or no response
at all when they were not providing a CORRECT response.

A NAO humanoid robot was tele-operated to deliver the
intervention in this study (Fig. 3(a)). The on board speech
recognition module of the robot was used to detect the
responses provided by the human participant. The resulting
set of 165 demonstrations was separated in a training and
a validation set that contained 123 and 42 demonstrations,
respectively.

B. Collaborative Packaging Task

This use case is about human-robot collaboration in a
packaging task in which the goal is to place a predefined

number of items in a box to prepare them for shipping.
This is a very common task in manufacturing environments.
During this task, a robotic arm will reach for one of the
items (PICK) and place it in a pre-designated area (P DQA)
for human inspection. Once the robot does that, the human
participant will start a QA inspection (INS). This type of
inspection consists of reviewing the state of the item and
logging its serial number in an electronic form that notifies
the robot when the inspection is completed. As the human
conducts the inspection, the robot will reach for another item
and will observe the following rule for the placement of item:
if an inspection is currently being conducted by the human,
the robot will place the newly picked item directly in the box
(P BOX); if the last inspection was completed before the item
was retrieved, the robot will place it in the pre-designated
area (P DQA) for inspection; if the last inspection exhibited
a during ITR with respect to the current item retrieval, the
item is dropped in the superficial QA inspection (P SQA)
area. The superficial inspection consists of a quicker revision
of the item and logging the item type in the electronic form
mentioned above. This set of actions is repeated until 6 items
have been retrieved by the robot. Our goal is to learn the
entire operation from demonstrations.

In this task, the robot can perform four actions: PICK,
P DQA, P SQA and P BOX. These actions are labeled as
non-transition actions, and the human action (INS) is the
only transition action in the TCG context. There are multiple
actions in this task that can exhibit a cyclical behavior. For
example, the PICK and P DQA actions can be executed
up to six times each in a single demonstration. Meanwhile,
perceptual aliasing is present every time a robot action needs
to be executed. This is because the only features available to
the robot are the states of its joints, and every robot action
starts and ends at a common resting position. Lastly, this use
case has actions that depend directly on specific temporal
relations among events. For example, where the robot will
place a retrieved item after the PICK action depends on the
status of the INS action of the human. This highlights the
advantages of using interval-based temporal models, as the
distinction between the before, during, and after ITRs needed
to perform policy selection in this case cannot be learned
with point-based approaches.

A second IRB-approved user study was organized to
collect demonstration data for this use case. A tele-operated
Sawyer robot was used for data collection. The physical setup
for this task is shown in Fig. 3(b). Two male college students
participated in the study and provided 5 demonstrations of
the task. The demonstration data was further complemented
with simulated demonstrations in which the start and end
times of the human actions were generated at random.

VI. EXPERIMENTAL RESULTS

Experiments were conducted to evaluate the ability of a
trained TCG model to execute a learned task autonomously.
The same physical set-ups shown in Fig. 3 were used in
these experiments. A video demonstrating the automated
executions can be found at: https://goo.gl/TeibPC.

https://goo.gl/TeibPC


Fig. 4. TCG model learned from the demonstration data of the object
naming intervention. Cyclical actions and transitions that trigger cases of
perceptual aliasing are marked in blue and red, respectively.

A. Object Naming Intervention

The TCG model learned for the object naming task is
shown in Fig 4. The transition actions that can generate
perceptual aliasing are marked with red to highlight the
importance of leveraging temporal information during the
execution of this task.

The policy selection capabilities of the model were tested
by using it to autonomously deliver the 42 interventions
of the validation set. An intervention was considered suc-
cessful if the TCG generated the exact same sequence of
actions as the original recording. The model was able to
successfully deliver the intervention in 96% of the sessions
(2 failures). The first failed intervention was caused by
a failure of the speech recognition module. The second
was caused when the model delivered a PROMPT action
before the participant provided a response. These results
prove that the model effectively handled all the instances of
perceptual aliasing that exist in the validation set. Moreover,
the learning capabilities of the TCG were highlighted by the
fact that 4 prompts were always delivered before aborting
a session, which matched the maximum number of prompts
delivered in the demonstration sessions. A validation user
study was conducted to evaluate the performance of the
TCG models in real-time autonomous interventions. Four
college students without ASD participated in this study and
were made aware that the robot was acting autonomously.
Each participant completed a set of 15 sessions for the
object naming intervention, following the same instructions
described in section V-A. An intervention was considered
successful if the model allowed the robot to act in accordance
to the behavior exhibited by the human participant and the
state of the intervention until a terminal action (REWARD
or ABORT) was executed. In this experiment, 96.7% of
the automated interventions were successful (58 successful,
2 failures). Both of the failed interventions were caused
by failures of the speech recognition module to recognize
the responses of the participants. The behavior observed in
this user study mimicked what had been observed in the
demonstration set, with the TCG model executing exactly 4
prompts, in the case of a non-compliant participant, before
aborting the session.

B. Collaborative Packaging Task

The TCG model learned for the collaborative packaging
task is displayed in Fig 5. An additional validation user
study was conducted to evaluate the performance of the TCG

Fig. 5. TCG model learned from the demonstrations of the collaborative
packaging task.

models in this use case. Two college students participated in
this study and were made aware that the robot was acting
autonomously. In this experiment, all 10 of the automated
executions were successful. An execution was deemed suc-
cessful if the model allowed the robot to act in accordance to
the actions performed by the human participant and the state
of the intervention until the all the items were placed in the
box. The behavior observed in the autonomous executions of
this task matched what was observed in the demonstration
set. Specifically, the TCG model was able to select the
appropriate action depending on the ITRs observed between
the latest INS and PICK actions on all of the 60 instances
where this decision was performed.

VII. CONCLUSION

This paper introduces the Temporal Context Graph, the
first interval-based temporal reasoning model capable of
learning structures with cyclical atomic actions. The model
relies on three principal components to perform temporal
reasoning. The first is a graphical structure that captures
the set of valid state transitions of the task and is used
to filter incorrect action observations. The second is Allen’s
interval algebra, which is used to create ITR sequences that
encode the temporal context of the task. The third, and
last, component is a probabilistic n-gram model. This model
leverages the rich temporal context created with the ITR
sequences to perform policy selection during the execution
of the task. The model was evaluated using two use cases
consisting of structured human-robot interactions. The results
demonstrate that TCGs can be used to learn the underlying
temporal structure of a task and perform policy selection,
exploiting this structure to address the issue of perceptual
aliasing. Additionally, the validation use cases demonstrate
that using an interval-based approach allows TCGs to learn
non-sequential temporal relationships. As a result, TCGs can
effectively learn tasks that cannot be modeled using point-
based temporal reasoning models.

Future work could include expanding the model to encode
the uncertainty of incoming action observations and learning
relevant non-sequential ITR sequences during the learning
phase. These enhancements would increase the performance
of the model during policy execution, reducing the depen-
dency on accurate perception modules and increasing its
robustness when faced with unseen ITR sequences during
the execution of the task.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (IIS 1664554).



REFERENCES

[1] S. D. Whitehead and D. H. Ballard, “Learning to perceive and act by
trial and error,” Machine Learning, vol. 7, no. 1, pp. 45–83, 1991.

[2] D. H. Grollman and O. C. Jenkins, “Incremental learning of subtasks
from unsegmented demonstration,” in Intelligent Robots and Systems
(IROS), 2010 IEEE/RSJ International Conference on. IEEE, 2010,
pp. 261–266.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning, “A survey
of robot learning from demonstration,” Robotics and autonomous
systems, vol. 57, no. 5, pp. 469–483, 2009.

[4] S. R. Ahmadzadeh, R. Kaushik, and S. Chernova, “Trajectory learning
from demonstration with canal surfaces: A parameter-free approach,”
in Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International
Conference on. IEEE, 2016, pp. 544–549.

[5] C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager, “Do what
i want, not what i did: Imitation of skills by planning sequences of
actions,” arXiv preprint arXiv:1612.01215, 2016.

[6] S. Elliott, Z. Xu, and M. Cakmak, “Learning generalizable surface
cleaning actions from demonstration,” in Robot and Human Interactive
Communication (RO-MAN), 2017 26th IEEE International Symposium
on. IEEE, 2017, pp. 993–999.

[7] R. Cubek, W. Ertel, and G. Palm, “High-level learning from demon-
stration with conceptual spaces and subspace clustering,” in Robotics
and Automation (ICRA), 2015 IEEE International Conference on.
IEEE, 2015, pp. 2592–2597.

[8] N. Koenig and M. J. Matarić, “Robot life-long task learning from
human demonstrations: a bayesian approach,” Autonomous Robots,
vol. 41, no. 5, pp. 1173–1188, 2017.

[9] K. Bullard, B. Akgun, S. Chernova, and A. L. Thomaz, “Grounding ac-
tion parameters from demonstration,” in Robot and Human Interactive
Communication (RO-MAN), 2016 25th IEEE International Symposium
on. IEEE, 2016, pp. 253–260.

[10] M. Clark-Turner and M. Begum, “Deep reinforcement learning of
abstract reasoning from demonstrations,” in Proceedings of the 2018
ACM/IEEE International Conference on Human-Robot Interaction.
ACM, 2018, pp. 160–168.

[11] J. F. Allen and G. Ferguson, “Actions and events in interval temporal
logic,” Journal of logic and computation, vol. 4, no. 5, pp. 531–579,
1994.

[12] C. E. Shannon, “A mathematical theory of communication,” ACM
SIGMOBILE Mobile Computing and Communications Review, vol. 5,
no. 1, pp. 3–55, 2001.

[13] G. Konidaris, S. Kuindersma, R. Grupen, and A. Barto, “Robot learn-
ing from demonstration by constructing skill trees,” The International
Journal of Robotics Research, vol. 31, no. 3, pp. 360–375, 2012.

[14] S. Ekvall and D. Kragic, “Robot learning from demonstration: a task-
level planning approach,” International Journal of Advanced Robotic
Systems, vol. 5, no. 3, p. 33, 2008.

[15] M. Pardowitz, R. Zollner, and R. Dillmann, “Learning sequential
constraints of tasks from user demonstrations,” in Humanoid Robots,
2005 5th IEEE-RAS International Conference on. IEEE, 2005, pp.
424–429.

[16] S. Niekum, S. Chitta, A. G. Barto, B. Marthi, and S. Osentoski,
“Incremental semantically grounded learning from demonstration.” in
Robotics: Science and Systems, vol. 9. Berlin, Germany, 2013.

[17] S. Manschitz, J. Kober, M. Gienger, and J. Peters, “Learning to
sequence movement primitives from demonstrations,” in Intelligent
Robots and Systems (IROS 2014), 2014 IEEE/RSJ International Con-
ference on. IEEE, 2014, pp. 4414–4421.

[18] J. Butterfield, S. Osentoski, G. Jay, and O. C. Jenkins, “Learning
from demonstration using a multi-valued function regressor for time-
series data,” in Humanoid Robots (Humanoids), 2010 10th IEEE-RAS
International Conference on. IEEE, 2010, pp. 328–333.

[19] N. Figueroa and A. Billard, “Learning complex manipulation tasks
from heterogeneous and unstructured demonstrations,” in IROS Work-
shop on Synergies between Learning and Interaction, 2017.

[20] D. Jurafsky and J. H. Martin, Speech and language processing.
Pearson London:, 2014, vol. 3.

[21] W. B. Cavnar, J. M. Trenkle, et al., “N-gram-based text categorization,”
Ann arbor mi, vol. 48113, no. 2, pp. 161–175, 1994.

[22] Z. Su, Q. Yang, Y. Lu, and H. Zhang, “Whatnext: A prediction system
for web requests using n-gram sequence models,” in Web Information
Systems Engineering, 2000. Proceedings of the First International
Conference on, vol. 1. IEEE, 2000, pp. 214–221.

[23] A. Murali, A. Garg, S. Krishnan, F. T. Pokorny, P. Abbeel, T. Darrell,
and K. Goldberg, “Tsc-dl: Unsupervised trajectory segmentation of
multi-modal surgical demonstrations with deep learning,” in Robotics
and Automation (ICRA), 2016 IEEE International Conference on.
IEEE, 2016, pp. 4150–4157.

[24] Y. Zhang, Y. Zhang, E. Swears, N. Larios, Z. Wang, and Q. Ji, “Model-
ing temporal interactions with interval temporal bayesian networks for
complex activity recognition,” IEEE transactions on pattern analysis
and machine intelligence, vol. 35, no. 10, pp. 2468–2483, 2013.

[25] M. Begum, R. W. Serna, D. Kontak, J. Allspaw, J. Kuczynski, H. A.
Yanco, and J. Suarez, “Measuring the efficacy of robots in autism
therapy: How informative are standard hri metrics’,” in Proceedings
of the Tenth Annual ACM/IEEE International Conference on Human-
Robot Interaction. ACM, 2015, pp. 335–342.

[26] R. M. Foxx, “Applied behavior analysis treatment of autism: The state
of the art,” Child and adolescent psychiatric clinics of North America,

vol. 17, no. 4, pp. 821–834, 2008.


	Introduction
	Related Work
	Preliminaries
	Interval Algebra
	N-grams

	Temporal Context Graph
	Model Description
	Learning a TCG
	Structure Learning
	ITR Sequence Generation
	Temporal Context Learning

	Policy Selection Using a TCG

	Evaluation Domain
	Object Naming Intervention
	Collaborative Packaging Task

	Experimental Results
	Object Naming Intervention
	Collaborative Packaging Task

	Conclusion
	References

