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Abstract— We are interested in learning from demonstration
(LfD) that can both learn and execute a trajectory and evaluate
the quality of a previously unseen trajectory in the domain of
assistive robotics. To this end, we propose a novel continuous
inverse optimal control (IOC) formulation that simultaneously
learns an optimal time-invariant controller and an evaluation
metric from human demonstrations. We assume that the ex-
pert’s objective function is a weighted combination of physically
meaningful basis objective functions. The evaluation metric is
derived from the learned expert’s objective function. The benefit
of this approach is twofold: 1) the controller can be optimized
with respect to the learned evaluation metric and subject to the
robot’s dynamic limitations and 2) the evaluation metric can
evaluate the quality of a demonstrated trajectory. We validate
our approach with two experiments in a robot guided therapy
setting: 1) evaluating demonstrated exercises with the learned
metric and 2) reproducing both unconstrained trajectories and
trajectories subject to the robot’s dynamic constraints.

I. INTRODUCTION

The goal of trajectory learning from demonstration (LfD)
is to model and reproduce generalized trajectories, capable
of adapting to new initial and final position, robustness
to perturbations, and obstacle avoidance [1]. Trajectory
LfD approaches often rely on a low-level controller to
generate trajectories, including: Dynamic Movement Prim-
itives (DMPs) [2], Stable Estimator of Dynamical Systems
(SEDs) [3], Gaussian Mixture Models (GMMs) and Gaussian
Mixture Regression (GMR) [4]. These approaches have shown
remarkable success in learning trajectories for simple tasks,
such as playing tic-tac-toe [5], pick-n-place [6], handwriting
[3], and more complex tasks such as ball-in-a-cup [7], playing
racket sports [8], and assistive strategies for an exoskeleton
[9].

These applications typically do not require evaluating the
quality of a demonstration. The provided demonstrations are
usually given by an expert making the learning unidirectional.
An example application where this is not the case is robot
guided exercise therapy [10], [11]. Here, as illustrated in fig. 1,
a domain expert (e.g. a therapist) teaches a robot, with human-
like upper-body anthropomorphism, a therapeutic exercise.
The robot learns and reproduces the motion for a patient who
then attempts to perform the exercise originally demonstrated
by the domain expert. Finally, the robot provides feedback
on the quality of the reproduction by the patient. In this
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Fig. 1: Learning: the therapist demonstrates to the YuMi robot.
Reproduction: the YuMi robot reproduces the motion for the
patient. Evaluation: the patient executes the motion and the
YuMi robot provides feedback.

application, the learning occurs from two perspectives (from
the therapist to the robot and the robot to the patient), which
must be accounted for in the LfD algorithm. Additionally,
the algorithm must: 1) learn to reproduce exercises without
violating the robot’s dynamic limitations, such as maximum
joint velocity, 2) learn to evaluate a demonstration with
respect to physically meaningful metrics, and 3) operate in a
high-dimensional continuous space with limited computation.
Notably in the second requirement, the patient may incorrectly
execute the motion due to impairments, misunderstanding,
or different starting and ending joint angles, for which the
algorithm must identify as incorrect. If the LfD algorithm can
capture the therapist’s intent, then the therapist-robot-human
skill transfer will be more effective. The state of the art in
trajectory LfD does not offer any such algorithm. We propose
a trajectory LfD approach to bridge this gap.

In this paper, we build upon our previous work in trajectory
LfD, namely the Phase Space Model (PSM) [12]. The PSM
is a dynamic system-based controller that learns a trajectory
from a single demonstration [12]. We extended the PSM
in [13] to include optimality with respect to a weighted
combination of basis objective functions. Here, we propose
an inverse optimal control (IOC) extension of the PSM in
order to simultaneously learn a stable closed loop controller
and an evaluation metric. This extension enables the PSM to
offer distinct advantages over contemporary trajectory-LfD
models, including: 1) physical trajectory characteristics, such
as control effort, can be expressed as linear functions of the
model parameters, 2) the PSM parameters can be optimized
with respect to these quantities by solving a quadratic program,



3) the dynamic limitations of a robot can be expressed as
linear inequality constraints in the optimization, and 4) the
quality of demonstrated motion can be determined with a
learned objective function composed of physical trajectory
characteristics. Since PSM parameter optimizations can be
formulated as quadratic programs, the PSM offers a distinct
computational advantage for iterative IOC methods.

II. RELATED WORKS

In this section, we summarize works on algorithms for
trajectory-LfD and how the concept of inverse reinforcement
learning (IRL) has been applied to LfD. Additionally, we
review robot-guided exercise training research and discuss
how trajectory learning and evaluation have been employed.

A. Inverse reinforcement learning for trajectory LfD

Providing meaningful feedback on the patient’s motion
requires a concept of a metric or reward criteria. IRL and
IOC are promising frameworks for solving this problem. The
purpose of these frameworks is to determine an objective
function from demonstrations, which eliminates the need
to design an objective function by hand. IRL has shown
success in learning from experts. For example, in [14], expert
level performance in aerial acrobatics was achieved with a
remote-controlled helicopter. Behavior modeling, as seen in
[15], is an IRL approach related to human motion learning.
Here, the pedestrian’s behavior is modeled with a policy,
enabling the prediction of their future position by simulating
the learned policy. These approaches, however, often suffer
from tractability. Most methods require solving a Markov
Decision Process (MDP) during each step of reward learning,
which is computationally expensive [16]. Since formulating an
MDP often relies on discretizing the action and/or state space,
IRL approaches can become intractable for high dimensional
spaces.

B. Trajectory LfD

Low-level trajectory learning approaches, such as DMPs
[2], GMM [4], and SEDs [3], are usually computationally
efficient. However, it is not trivial to formulate a convex
optimization of physical trajectory characteristics with respect
to their parameters. Additionally, these approaches do not
explicitly consider the robot’s dynamics.

Dynamic system-based learning from demonstration [2],
[3], and statistical learning [17], [18] are among the state of
the art methods for low-level trajectory learning. There are
two primary limitations of existing LfD approaches for robot
guided exercise therapy: 1) not explicitly considering the
robot’s dynamic limitations and 2) relying on simple hand-
picked evaluation metrics to assess exercises. Approaches
that exhibit the first limitation often assume the existence
of a low-level controller that can track a desired kinematic
trajectory. The DMP is a popular dynamic system-based
approach which learns motion from a single demonstration
[2]. It is robust to perturbations and small goal adaptations but
does not to generate meaningful motion in situations that are
significantly different than the original demonstration. Since

DMP is implicitly time dependent, a heuristic is required to re-
index time in the presence of large temporal perturbations. A
more recent extension of DMP includes an IRL formulation
in [19]. The objective function is structured in a general
form, which can express non-linear terms on the state cost.
However, the minimization problem is non-convex and only
locally optimal solutions can be found. In [20], the DMP
formulation is modified to learn from multiple demonstrations
via a probabilistic approach. The trajectory learning in [4]
creates a statistical representation of the demonstrated motion
via a GMM. This approach learns a time-dependent trajectory
distribution from multiple demonstrations. Unlike DMP,
the GMM approach does not easily adapt to perturbations.
Lastly, SEDs learns time-invariant dynamics from multiple
demonstration through a statistical encoding with stability
constraints. Similar to the GMM approach, SEDs relies on a
low-level controller to follow the desired trajectory.

C. Robot-guided exercise training

Most rehabilitation approaches with socially assistive robots
have relied on simple hand-picked evaluation metrics to
assess the patients exercise execution. In [21], achieving high
accuracy required positioning the participant in a specific
location in the video and required calibration. Their metric
defined success as the number of times the participant’s
arm reached 90 percent of its extent divided by the number
of attempts by the patient. In [22], exercises performed by
a participant are marked correct if their arm reaches a pre-
specified goal location. Yet another example of a hand-crafted
metric is seen in [23]. The robot characterizes an exercise as
correct if the arm forms a specific angle with the normal of
the floor.

Some more recent approaches have employed LfD powered
robots for the exercise therapy setting. In [24], An LfD
powered fitness coach is developed and exhibits some
limitation. The proposed evaluation metric directly compares
the patient’s and therapist’s joint trajectories with Dynamic
Time Warping (DTW). This enables the robot to identify
incorrectly executed movements, but it does not necessarily
provide meaningful feedback. In [10], the GMM method
from [4] was applied to the therapeutic exercise setting. The
advantage of this approach is the ability to generate robot
trajectories and assess the patient execution with a single
framework. However, this approach does not take the robot’s
dynamics into account when reproducing the motion nor
does it provide specific feedback on the execution. In [25],
a spiking neural network is proposed to learn motions from
an expert in the exercise setting. This work, however, does
not provide an evaluation metric. Previous works have noted
the importance of considering the robots dynamic limitations
in reproducing motions. In [24], an optimization problem is
formulated that maximizes the robot’s reproduction accuracy,
while considering the stability of the robot.

III. THE PROPOSED APPROACH

By formulating the IOC problem for the PSM, we can
simultaneously learn an evaluation metric and reproduce



optimal trajectories in a single framework. The set of viable
basis objective functions for the PSM is expressive enough to
represent several quantitative metrics seen in the therapeutic
exercise literature [26], [27]. We assume a weighted combi-
nation of these metrics compose the expert’s objective for
therapeutic exercises. We formulate an optimization problem
to learn the weights from expert demonstrations. The learned
objective function 1) allows the robot to reproduce trajectories
that are optimized with respect to the expert’s objective, while
not exceeding its dynamic limitations and 2) offers a way to
quantitatively evaluate a patient’s exercise execution. Fulfilling
these two criteria will help the robot to transfer skill from
the therapist to the patient.

A. PSM review

The PSM is a trajectory-LfD framework that models n-
dimensional trajectories with piece-wise linear time invariant
differential equations. The PSM formulation requires that
trajectories abide by the following criteria:

1) Trajectories are governed by second order dynamics.
2) The acceleration is directly controllable.
3) There exists a direction in the demonstration’s n-

dimensional space, such that the velocity projected onto
that direction is always positive.

4) The position and velocity are observable and the noise
is negligible.

The first assumption implies that the position and velocity
are part of the system’s state and continuous. Let q ∈ Rn be
an n-dimensional position variable. It follows that q̇ ∈ Rn

and q̈ ∈ Rn are vectors of the velocity and acceleration
variables. To achieve time invariant control, the acceleration
is modeled as a function of state, that is q̈ = h(q, q̇), where
h : R2n 7−→ Rn. Assumptions 2 and 4 are required for this
control structure. Assumption 3 implies that there exists a
matrix transformation V , such that q̇′ = V −1q̇ and q̇′1 > 0
for all time. This transformation aligns the first dimension’s
axis with the direction referred to in assumption 3. We use the
prime notation to denote position, velocity, and acceleration in
transformed coordinates. The concept of the PSM controller
is described in eqs. (1-11). First, the system’s position and
velocity are projected into transformed coordinates with eqs.
(1, 2). In the transformed coordinates, the acceleration ¨̂q is a
piece-wise function of position q′ parameterized by k ∈ Rs−1,
c ∈ Rs−1, and parameter tensor A ∈ Rpo×(s−1)×(n−1) as
seen in eqs. (9, 10). Here, po is the polynomial order in eq. (6).
The hat notion refers to the modeled trajectory values. The
piece-wise differential equations require cut points distributed
along q′1. Let cp ∈ Rs be an ordered vector of constants from
q′min to q′max. For example, cp = [0, 1, 2, 3, 4]T , q′min = 0,
q′max = 4, and s = 5. Several equations are indexed with i,
which ranges from 2 to n. In the transformed coordinates,
eqs. (4-8) correspond to physically meaningful quantities: eq.
(4) describes the control effort, eq. (5) describes the kinetic
energy, eq. (6) describes the position, eq. (7) describes the
direction of motion, and eq. (8) describes the curvature of
motion. Finally, the acceleration is projected back into the

Fig. 2: left: demonstrations in the original coordinates
as a function of q1; right: demonstrations in eigenvector
coordinates as a function of q′1. The five vertical dashed
black lines correspond to cut point vector cp with s = 5.

original coordinates as seen in eq. (11). Feedback terms p
and d act as a PD controller to reject perturbations.

q′ = V −1q (1)

q̇′ = V −1q̇ (2)
j(x) = argmax

y∈{1...s}
{y, | x− cpy > 0} (3)

û = kj(x)x+ cj(x) (4)

˙̂q21 = 2

∫ q′1

q′I1

ûdx+ ˙q′I1
2

(5)

q̂i =

po∑
d=1

Adj(q′)(i−1)q
′
1
d−1 (6)

dq̂i
dq̂1

=

po∑
d=1

(d− 1)Adj(q′)(i−1)q
′
1
d−2 (7)

d2q̂i
dq̂21

=

po∑
d=1

(d− 2)(d− 1)Adj(q′)(i−1)q
′
1
d−3 (8)

¨̂q1 = û (9)

¨̂qi =
d2q̂i
dq̂21

˙̂q21 +
dq̂i
dq̂1

¨̂q1 (10)

q̈ = V (¨̂q + p(q̂ − q′) + d( ˙̂q − q̇′)) (11)

The PSM must be instantiated with initial position q′I ∈ Rn

and velocity ˙q′I ∈ Rn in order to optimize the parameters.
Equality constraints must be imposed on q̂i, dq̂i

dq̂1
, dq̂2i

dq̂21
, and

û at cp2, c
p
3, ...c

p
s−1 to ensure that the piece-wise functions

are continuous. Additionally, constraints for the initial and
final position and velocity must added. We define the set C to
contain all constraints the PSM optimization is subjected to. In
total, there are np = po(s−1)(n−1)+2(s−1) parameters and
nc = 3(n−1)+s constraints, resulting in nf = np−nc free
parameters. Inequality constraints must be added to ensure
˙̂q2 is always greater than zero, so that assumption 3 is not
violated. Imposing the previously discussed constraints will
ensure eq. (11) is a stable closed loop controller.

We use the demonstration’s eigenvector matrix as the linear
transformation V . In general, the transformation does not
guarantee q′1 is always increasing, hence we set any negative
q̇′1 to zero. Notably, if a time invariant controller is not
required, then time may be used for q1 and the identity
matrix for V . Fig. 2 illustrates the coordinate system transfor-
mation with the eigenvector matrix. The main benefit of this
formulation is that trajectory characteristics, such as q̂ and ˙̂q21



are expressed as linear combination of PSM parameters A, k,
and c. Consequently, a convex optimization can be formulated
given quadratic objective functions. Additionally, constraints
can be added to ensure physically feasible solutions.

B. Quadratic basis objective functions

The PSM parameters can be optimized with respect to a
weighted combination of quadratic basis objective functions.
We define a PSM trajectory characteristic function (TCF) as
a mapping from q′1 to a physical trajectory characteristic.
Example trajectory characteristics include: control effort,
displacement, direction, etc. We only consider TCFs (f ) that
can be expressed as a linear combination of PSM parameters,
as seen in eq. (12).

pi = [ki, ci, A
f
i ]

T

f(q′1) =

np∑
i

mi(q
′
1)pi (12)

Here, mi : R 7−→ R is a function of q′1 and Af is the tensor
A flattened into a one dimensional vector. All possible PSM
quadratic basis objective functions (Jbm) follow the structure
of eq. (13).

Jbm =

∫ q′F1

q′I1

(f(x)− v(x))2dx (13)

Here, q′F1 is the final position, and v is a function from q′1
to a desired TCF value.

Similar to the PSM TCF, we define an expert TCF gd :
R 7−→ R as a function from q′1 to the physical trajectory
characteristic. Each demonstration has unique trajectory
characteristics, hence the expert TCF is dependent on the
demonstration index d, where d ∈ {1, 2...nd} and nd is the
number of demonstrations. It follows that the expert basis
objective function (Jbe) in eq. (14) is a function of the specific
demonstration.

Jbe(d) =

∫ q′F1

q′I1

(gd(q
′
1)− v(q′1))

2dx (14)

We assume that the expert’s objective function (Je) is
composed of a weighted combination of nb quadratic basis
objective functions, as shown in eq. (15),

wTJe(d) = w1J
be
1 (d) + w2J

be
2 (d) + ...wnbJbe

nb(d) (15)

where w is a vector of weights. The corresponding PSM
objective function (Jm) is show in eq. (16).

wTJm = w1J
bm
1 + w2J

bm
2 + ...wnbJbm

nb (16)

Since the basis objective functions are quadratic, the optimal
PSM parameters corresponding to Jm can then be solved
with a quadratic program.

Eqs. (4-8) are linear functions of PSM parameters, hence,
they are valid TCFs. The desired TCF value should selected
such that the basis objective function represents a metric
described in the human movement literature. For example,

the minimum control effort metric is described by setting the
PSM TCF (f ) to û in eq. (4) and v to 0. Table I illustrates
some PSM basis objective functions analogous to those seen
in the human movement literature. Notably, basis objective

TABLE I PSM representations of basis objective functions
from human movement literature [28] [27]. wE , wdis, weff

are weight vectors corresponding to kinetic energy, discomfort,
and effort objective functions. The energy objective assumes
a unit mass point particle model and qN is a neutral joint
configuration.

Energy
∫ q′F1
q′I1

wE
j(x)(2

∫ x

q′I1
ûdy + ˙q′I1

2
)2dx

Discomfort
∫ q′F1
q′I1

wdis
j(x)(q̂ − qN )2dx

Effort
∫ q′F1
q′I1

weff
j(x)(û)

2dx

functions are used for each cut point of the PSM and for each
physical trajectory characteristic, e.g. energy, discomfort, etc.

C. Learning weights

We want to find a weight vector w that minimizes the
difference of the expert and PSM basis objective functions.
Given a set of basis objective functions, the inverse learning
problem can be formulated. We express this difference for
the dth demonstration in eq. (17).

J(p, w, d) = wTJm(p, d)− wTJe(d) (17)

Here, p denotes the PSM parameters. The PSM objective
function Jm is written as a function of the demonstration
index because the quadratic basis objective functions are
integrated over the demonstration’s q′1 dimension. For the
PSM and expert objective function to correspond, the initial
and final positions of a demonstration must be used for q′I1
to q′F1 . The goal is to learn the PSM parameters with the
minimum possible under-performance with respect to the
demonstrator, given the worst-case possible realization of the
weight vector. We describe this objective in eq. (18).

max
w∈Rnb

 1

nd

nd∑
d=1

min
p∈Rnp

{
J(p, w, d) | Cd

}
| ‖w‖∞ ≤ 1, w ≥ 0


(18)

Here, Cd refers to the PSM constraints discussed in the
previous section instantiated for the dth demonstration.
Notably, we do not include a constraint on the final position
and velocity in the optimization. The inner minimization is
convex and can be solved with a quadratic program. For
a small step in w, we assume p is constant, yielding the
following gradient approximation in w.

1

nd

nd∑
d=1

Jm(p, d)− Je(d) (19)

We use a constrained nonlinear gradient-based optimizer to
learn the weight vector w. Conceptually, the gradient indicates
that weights of PSM basis objective functions with lower error



than those of the demonstration’s basis objective functions
should be increased.

Once the weights are learned, the expert objective function
value wTJe can be used to evaluate a given demonstration.
The final penalty is shown in eq. (20).

penalty =
wTJe

wTJm
(20)

Notably, the value is normalized by the PSM objective
function value wTJm to ensure trajectories with small
q′F1 − q′I1 are appropriately penalized.

IV. EXPERIMENTAL RESULTS

We conducted a human subject study in a therapeutic
exercise setting. A therapist performed several commonly
prescribed therapeutic exercises, namely shoulder press,
lateral raise, forward raise, and scaption. The therapist
provided 3 expert demonstrations for training the models
and 6 demonstrations for testing the models, composed
of 3 correct and 3 erroneous demonstrations. We denote
the training demonstrations as the ‘therapist demonstration
set’, the 3 additional correct demonstrations as the ‘correct
patient demonstration set’, and the erroneous demonstrations
as the ‘erroneous patient demonstration set’. Given these
demonstrations, we will show two primary results. First, our
method can learn the weights of the expert’s objective function
and thereby reproduce the exercises. Second, the learned
objective can be used to distinguish correctly and incorrectly
performed exercises.

All demonstrations were recorded with a Qualisys motion
capture system at 300 Hz. The demonstrations were smoothed
to eliminate noise and subsequently cropped to only include
the concentric phase of each exercise. Demonstrations were
then converted to the 4-dimensional joint space of the robot,
via a vector based inverse kinematic solution [13]. This
procedure calculates joint configurations for the robot that
correspond to the therapist’s configuration for each demon-
stration. Fig. 3 illustrates the therapist demonstrating the
exercises and the robot’s corresponding joint configurations.
For our implementation, we construct a PSM controller with
6 cut points for each exercise. Each PSM controller has its
own transformed coordinate system q′, and the cut points are
distributed along the q′1 axis. The cut points are chosen such
that all transformed demonstrations are between cp1 and cps .
We used basis objective functions corresponding to control
effort, kinetic energy, position, direction, and curvature for
all exercise models. We validate our approach in the next
sections with exercise reproduction and patient evaluation
experiments.

A. Experiment 1: exercise reproduction

Each PSM was trained with the ‘therapist demonstration set’
using the weight learning approach described in section 3.3.
As a baseline comparison, we implemented DMP as described
in [20] to learn exercises from multiple demonstrations.
Similarly, we set the initial conditions and goal equal to
that of the demonstrations. Fig. 4 shows both PSM and

DMP trajectories reproduced for the forward raise exercise.
In addition to reproducing expert trajectories, inequality
constraints can be added to the PSM optimization to ensure
that the robot’s dynamic limitations are not exceeded. Fig.
4 illustrates a trajectory reproduction with a maximum q̇′1
of
√
2 rad

s . Both methods generate trajectories similar to
the expert, but the PSM benefits from slightly improved
accuracy. However, the main benefit of the PSM is that
explicit inequality constraints can be added, yielding optimal
behavior subject to the robot’s dynamic limitations. In fig.
4, the velocity constraint scales the motion over time, while
maintaining the shape of the movement and thus preserving
the integrity of the exercise. The constraint of

√
2 rad

s was
arbitrarily selected to demonstrate the time scaling.

B. Experiment 2: patient evaluation

Using the trained PSMs from the previous experiment, we
evaluated both the correct and erroneous patient demonstration
sets with eq. (20). As a baseline comparison, we used the
GMM approach proposed in [29], [30] and implemented in
[10]. This approach is explicitly time dependent, requiring
that demonstrated trajectories be aligned in time. Hence, all
times were scaled between 0 and 1 for the GMM approach.
Similar to the PSMs, the GMMs were trained on the ‘therapist
demonstration set’ and evaluated on the correct and erroneous
patient demonstration sets. We used the suggested expectation
maximization algorithm to train the GMMs. Additionally, we
used the evaluation metric from [10] with the full covariance
matrix as the weight term.

The minimum, maximum, and mean for each of the PSM
and GMM log scaled evaluations are shown in fig. 5. Both
methods yield a considerably reduced penalty on the correctly
performed exercises as compared to the erroneous exercises.
However, the PSM approach results in a tighter range on the
correct demonstrations. The consistent penalty value for the
PSM approach suggests that the learned objective function
captures key characteristics of the correctly demonstrated
exercises.

In addition to generating a total penalty, a subset of basis
objective functions can be used to give feedback on specific
meaningful physical quantities. For example, fig. 6 shows
the combined error for the all basis objective functions
corresponding to the movement direction. Differentiating
the combined basis objective functions with respect to
q′1, generates an instantaneous penalty for the direction
basis objective functions. We denote this quantity as the
instantaneous penalty. Fig. 6 illustrates the instantaneous
penalty for the direction basis objective functions alongside
the direction the PSM and erroneous patient. The deviation
in the directions are reflected in the instantaneous penalty.

Given the instantaneous penalties that reflect physically
meaningful quantities, a simple heuristic can be applied to
extract feedback for the demonstrator. For example, if the
difference between the demonstrated and optimal trajectory
instantaneous penalties is exceeds a threshold value, then the
user can be given feedback.



Fig. 3: robot configurations corresponding to the therapist’s demonstrations for shoulder press, lateral raise, forward raise,
and scaption.

Fig. 4: PSM, DMP, and the expert joint trajectories (rad) are plotted as a function of time (s) for the forward raise exercise.
The constraint q̇′1 ≤

√
2 rad

s is imposed on the PSM trajectories in the last row.

Fig. 5: left: log scaled PSM penalties for correct and incorrect demonstrations; right: log scaled GMM penalties

Fig. 6: left: the optimal direction q′2
q′1

(in blue) and an
erroneous demonstration (in black) for the lateral raise
exercise; right: instantaneous penalty for the direction basis
objective functions of the PSM and erroneous demonstration.
Here, i indexes all direction basis objective functions.

V. CONCLUSION

We proposed a novel IOC approach based on the PSM
controller and validated our approach with results in the
therapeutic exercise domain. The weights of the PSM basis

objective functions were successfully learned for all exercises
and the robot was able to reproduce trajectories similar the
expert demonstrations. The learned objective function also
served as an effective evaluation metric to give quantitative
feedback on physically meaningful trajectory characteristics.
Finally, the proposed approach yields a closed loop controller,
which can be optimized subject to dynamic limitations, such
as velocity limits. Given the learned controller, the robot can
help transfer skills from the therapist to the patient
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