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Abstract— This paper proposes a dynamic system based
learning from demonstration approach to teach a robot ac-
tivities of daily living. The approach takes inspiration from
human movement literature to formulate trajectory learning as
an optimal control problem. We assume a weighted combination
of basis objective functions is the true objective function for
a demonstrated motion. We derive basis objective functions
analogous to those in human movement literature to optimize
the robot’s motion. This method aims to naturally adapt
the learned motion in different situations. To validate our
approach, we learn motions from two categories: 1) commonly
prescribed therapeutic exercises and 2) tea making. We show
the reproduction accuracy of our method and compare torque
requirements to the dynamic motion primitive for each motion,
with and without an added load.

I. INTRODUCTION

Our goal is to employ robotic technology for assistive

applications, such as robot guided exercise therapy and

household service robots. The robot’s ability to faithfully

reproduce human-like motion from observations is a critical

requirement for assistive robots. Trajectory learning is a rich

domain in robot learning from demonstration (LfD) research

[1], [2], [3], [4]. LfD-powered robots have successfully

learned to play T-ball [5], tic-tac-toe [6], chess [7], perform

pick-n-place tasks [8], pour drinks [9], do chores [10], and

play drums [11].

The vast majority of LfD research is dedicated to manipu-

lation tasks [4]. Success is generally measured by the robot’s

ability to manipulate objects, while adapting to a dynamic

environment. However, object manipulation tasks may involve

finely coordinated motion, while satisfying dynamic and

joint constraints. For example, therapeutic exercise training

must capture both the fine details of human movement and

anatomical limitations. Alternatively, tea making is only

concerned with reaching a goal configuration. This paper

develops a dynamic system based approach, which accurately

reproduces trajectories, optimizes for robot dynamics, and

adapts to varying end-effector loads.

II. RELATED WORKS

State of the art methods for human motion learning

include dynamic system learning [12], [13], inverse optimal

control (IOC) [14], [15], and statistical learning [16], [17],

approaches.
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Dynamic system based approaches benefit from quick reac-

tion time by mapping the robot’s state to actions [18]. State

is commonly defined by the joint angles or the end-effector

position for manipulation tasks. Another benefit of dynamic

system based approaches is robustness to perturbation and

local re-planning [12], hence, they can overcome some level

of uncertainty. However, these approaches do not necessarily

overcome problems with limited training data. Methods that

can handle multiple demonstrations, such as Stable Estimator

of Dynamical Systems (SEDS), require training examples

throughout the entire state space to generate meaningful

trajectories. Otherwise, trajectories may not be consistent

with the original demonstration due to a lack of information

in that state [13].

The dynamic motion primitive (DMP) is a popular dynamic

system based approach that learns motion from a single

demonstration [12]. It is robust to perturbations and small

goal adaptations, but fails to generate meaningful motion

in situations that are significantly different than the original

demonstration. This is partially because each dimension is

learned separately, thus relationships between dimensions are

not encoded [13]. Since then, DMP has been extended to

include multiple demonstrations for motion learning [19].

Similar to SEDS, a lack of training data can produce

inconsistent motion, hence, more demonstrations are needed.

Since DMP is implicitly time dependant, a heuristic is

required to re-index time in the presence of large temporal

perturbations.

The goal of inverse optimal control (IOC) approaches is

to find a cost function that explains the underlying structure

of the demonstrations [20]. By utilizing the discovered cost

function, trajectories that are optimal with respect to the

demonstrations can be generated. These approaches benefit

from the ability to adapt to situations never seen in the training

set. For example, if obstacles are in the path, constraints can

be added to avoid penetration. Additionally, penalties can be

added for getting too close to obstacles. IOC has demonstrated

success in generating control policies for high dimensional

problems, such as those seen with humanoids [14]. The major

difficulty of IOC is the complexity in learning the true cost

function and efficiently optimizing trajectories for the learned

cost function. These methods often require large amounts of

training data.

The probabilistic approach of trajectory learning in [7]

creates a statistical representation of the demonstrated motion

via a Gaussian mixture model (GMM). This approach

learns a time-dependent trajectory distribution from multiple

demonstrations. The criticisms of this approach are the

difficulty of online trajectory adaptation, such as avoiding
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obstacles and changing the goal configuration. Furthermore,

since GMM-based trajectory learning is also time dependent,

in the presence of temporal perturbations, a heuristic is again

required to re-index time [21].

None of these approaches combine efficient optimization

of trajectories with respect to the robot’s dynamics, exhibit

time-invariant behavior, and are robust to perturbations. It is

often assumed that there exist a low-level controller, which

can track the trajectory generated by these approaches. If the

demonstration is teleoperated or kinesthetically delivered, then

this is a realistic assumption because the robot’s dynamics

are implicitly captured. However, this becomes less likely

if the robot’s dynamics change due to added end-effector

load. Additionally, if the motion is demonstrated by a human

and then mapped to the robot, the robot’s dynamics are not

implicitly captured. Therefore, we propose a dynamic system

based approach that includes the robot’s dynamics in its

formulation, enabling it to balance execution accuracy with

dynamic limitations.

We take inspiration from human movement literature to

formulate trajectory learning as an optimal control problem.

Instead of optimizing a single trajectory, we aim to optimize

a parametric control policy. Additionally, we formulate our

approach to include constraints on the robot’s dynamics and

joint angles. The main benefits of this approach are that:

• small perturbations during execution are handled by the

dynamic system based controller

• robot dynamic constraints are not violated

• trajectories naturally adapt to varying end-effector loads

The model proposed in this paper combines the strengths of

dynamic system LfD and optimal control into one framework.

To the extent of the authors’ knowledge, there are no other

time-invariant dynamic system based approaches, which can

efficiently account for varying robot dynamics.

III. THE PROPOSED APPROACH

We employ a dynamic system based LfD controller,

namely the Phase Space Model (PSM) [22], to learn generic

manipulation tasks. In section III-A, we present an algorithm

to generate robot joint trajectories corresponding to human

demonstrations. In section III-B, we present a control strategy

derived from the PSM. We then develop basis objective

functions, linear constraints, and propose an optimization

algorithm in sections III-C, III-D, and III-E, respectively.

n ∈ N: number of robot joints

m ∈ N: number of frames in the demonstration

Q ∈ R
n×m: correspondence matrix

Q̇ ∈ R
n×m: time derivative of the correspondence matrix

V ∈ R
n×n: eigenvector matrix of QQT

Q′ ∈ R
n×m: Q expressed in transformed coordinates

Q̇
′

∈ R
n×m: time derivative of Q

′

q(t) ∈ R
n: joint position state

q̇(t) ∈ R
n: joint velocity state

q̈(t) ∈ R
n: joint acceleration action

D ∈ R
6×m: human demonstration matrix

De ∈ R
3×m: vectors from human shoulder to elbow

Dw ∈ R
3×m: vectors from human elbow to wrist

Jeω ∈ R
3×n: jacobian’s rotational part of robot’s elbow

Jwω ∈ R
3×n: jacobian’s rotational part of robot’s wrist

Re(q) ∈ SO(3): rotation matrix from base to elbow

Rw(q) ∈ SO(3): rotation matrix from base to wrist

s ∈ N: number of segmentation points along q′1
P ′ ∈ R

s×n: cut point matrix in transformed coordinates

q̂ ∈ R
n: piece-wise spline approximation of the 2nd

through nth elements of q′ as a function of q′1
po ∈ N: order of the piece-wise polynomial

A ∈ R
(po+1)×(s−1)×(n−1): tensor of spline coefficients

z = [0, 0, 1]
T

l ∈ 1...m: frame index

i ∈ 1...n: joint index

r ∈ 1...s: segment index

We will use the above notation throughout the paper.

Additionally, elements of vectors are indexed with a single

subscript and elements of matrices are indexed with two

subscripts. A single subscript on a matrix indicates a column

of the matrix. Some symbols are written with superscript

notation. This is for designation and does not represent

a mathematical operation, e.g the prime superscript ( ′ )

designates transformed coordinates. Furthermore, the hat (ˆ )

and dot ( ˙ ) notations represent an approximate function and

time derivative, respectively.

A. Human to Robot Correspondence

The robot’s anthropomorphism plays a critical role in

finding an meaningful correspondence between the robot

and the human demonstration. Ideally, the robot should

have a human-like range of motion and form factor. The

Yumi robot is perhaps the best suited commercially available

robot, given its human-like structure. This helps simplify the

correspondence problem.

We take inspiration from the therapeutic exercise setting

to develop a correspondence mapping. The clinical standard

for measuring joint angles is a goniometric measurement

[23]. The goniometer approximates joint angles by measuring

the angle between limb segments. For example, the elbow

joint angle is approximated by measuring the angle between

the upper arm and the forearm. To this end, we define the

objective function in eq. (1), which penalizes misalignment

between the robot’s and therapist’s elbow and wrist vectors.

min
q

∣

∣

∣

∣

∣

∣

∣

∣

De
l

‖De
l ‖
−R(q)ez

∣

∣

∣

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

∣

∣

∣

Dw
l

‖Dw
l ‖
−R(q)wz

∣

∣

∣

∣

∣

∣

∣

∣

(1)

Here, De is a matrix of vectors from the shoulder to the

elbow and Dw contains the vectors from the elbow to the

wrist for each frame of the demonstration. These vectors are

illustrated in Fig. 1.

Applying algorithm 1 will generate the correspondence

matrix Q from the human demonstration using an iterative

least squares approach. For each frame of the demonstration, a

joint configuration q is found that minimizes eq. (1) and added
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Fig. 1: robot therapist vector based mapping. The vector De
l

is from the shoulder to the elbow and the vector Dw
l is from

the elbow to the wrist at frame l.

Algorithm 1 Generate Correspondence Matrix

Input: De, Dw, x0

Output: Q

θ ← 0.001
λ← 0.0001
u← 0.005
l← 0
Q1 = x0

while l < m do

l← l + 1
do

ǫe ←
De

l

‖De

l
‖ −Rez

Ql ← Ql + θ
(

(Jω
e )

TJω
e + λI

)−1
(Jω

e )
T ǫe

ǫw ←
Dw

l

‖Dw

l
‖ −Rwz

Ql ← Ql + θ
(

(Jω
w)

TJω
w + λI

)−1
(Jω

w)
T ǫw

while ‖ǫe‖+ ‖ǫw‖ ≥ u

end while

as a column in the correspondence matrix. This procedure

aligns the robot’s 3rd joint axis with the therapist’s upper

arm vector and the robot’s 5th joint axis with the therapist’s

lower arm vector. It is important that a reasonable initial

value (x0) is used; otherwise, the algorithm could have poor

convergence and correspondence. For all tasks considered in

this paper, initializing x0 to the zero vector was sufficient. It

should be noted that θ, λ, and the convergence threshold u

may need fine-tuning.

B. Control Strategy

Given a correspondence matrix Q, we define a new matrix

Q
′

in transformed coordinates with its origin at Qm.

Q
′

= V −1(Q−Qm1
T ) (2)

Here, V is the eigenvector matrix of QQT , sorted by

eigenvalues. We then build the cut point matrix P
′

by

sampling s points from Q
′

uniformly in time. We assume

that q
′

1 is never decreasing, more specifically, q̇
′

1 ≥ 0 for the

entire movement. To ensure this, if P
′

11 is positive, then the

eigenvector matrix is negated. Our approach is to implement

the PSM in the transformed coordinates. The PSM is a

dynamic system based LfD method that models motion with

a set of piece-wise linear time invariant systems. We denote

these systems as Phase Space Transition Functions (PSTFs),

which are expressed in eq. (3),

q̈
′

1(q
′

) =















k
j(q

′

1
)q

′

1 + c
j(q

′

1
) q̇

′

1 ≥ 0

b q̇
′

1 < 0
−q̇

′
2

1

2(q′ob−q
′

1)
CD = 1

(3)

where k and c are parameter vectors for the PSTFs, j is the

segment index function (eq. (4)), and q
′

1 is the first element

of the robot joint angles in the transformed coordinates. The

terms b, CD, and q
′

ob are discussed in our previous work.

j(x) = argmax
y∈{1...s}

{y, x− P ′
y1 > 0} (4)

Since q
′

1 is always increasing, we can define q̂i as a generic

function fi(q
′

), where i = 2, 3, 4..., n, to approximate the

demonstration.

q̂i(q
′

) =

{

q
′

1 i = 1

fi(q
′

) i > 1
(5)

The first and second derivatives of q̂i are the following

equations:

˙̂qi(q
′

) =
d

dq
′

1

fi(q
′

)q̇
′

1 (6)

¨̂qi(q
′

) =
d2

dq
′2
1

fi(q
′

)q̇
′2
1 +

d

dq
′

1

fi(q
′

)q̈
′

1 (7)

We define each function fi to be a piece-wise polynomial.

fi(q
′

) =

po

∑

d=0

A(d+1)j(q
′

1
)(i−1)q

′d
1 (8)

Here, A is a tensor containing coefficients of the splines and

po is the order of the polynomial. Combining eq. (3), eq. (7),

and a position feedback term, results in the final controller

as shown in eq. (9).

q̈
′

i(q
′

) =

{

q̈
′

1(q
′

) i = 1
¨̂qi(q

′

) + p(q̂i(q
′

)− q
′

i) i > 1
(9)

Here, p is a proportional gain parameter. Fig. 2 is a visual

representation of the control setup.

C. Basis Objective Functions

In our previous work, we designed the PSM for trajec-

tory learning without considering optimality. The PSTFs’

parameters were computed with regression, while constraining

velocity. In this section, we derive meaningful basis objective

functions to accommodate optimality. Human movement

literature suggests that the central nervous system optimizes

the basis objective functions shown in Tab. I with task-specific

constraints to generate motion [24], [25]. We approximate

three of these basis objective functions as linear functions of

the PSTFs’ parameters. The kinetic energy, torque, and jerk,
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Fig. 2: 2D illustration with three cut points. The blue and red

shaded regions indicate where j(q
′

1) is 1 and 2, respectively.

TABLE I human movement basis objective functions [24],

where θ represents joint angles, τ represents joint torques,

and T is the final time.

Energy
∫ T

0
|θ̇τ |dt

Torque
∫ T

0
τ2dt

Torque change
∫ T

0
τ̇2dt

are shown in equations (10), (11), and (12), respectively.

h(q
′

) =
1

2
k
j(q

′

1
)
(q

′2
1 − P

′2

j(q
′

1
)1
) + c

j(q
′

1
)
(q

′

1 − P
′

j(q
′

1
)1
)

Ei(q
′

) =















h(q
′

) + 1
2
Q̇

′2
1i j(q

′

1) = 1, i = 1

h(q
′

) + E1(P
′

j(q
′

1
)1
) j(q

′

1) > 1, i = 1

E1(q
′

)( d

dq
′

1

fi(q
′

))2 i > 1

(10)

τ(q
′

) = M(V q̂(q
′

)+Qm)V q̈
′

(q
′

)+ g(V q̂(q
′

)+Qm) (11)

τ̇(x, y) = τ(y)− τ(x) (12)

Here, τ represents the robot’s joint torques, M is the mass

inertia matrix function, and g is the gravity torque function.

It should be noted that eq. (11) is an approximation of the

joint torques because the Coriolis matrix is not included.

The Coriolis terms would introduce non-linearity in terms

of the PSTFs’ parameters, preventing the formulation of a

quadratic basis objective function. We found that Coriolis

and centrifugal forces are relatively small compared to the

gravitational and inertial forces, hence, it is a reasonable

simplification. Quadratic basis objective functions analogous

to those in Tab. I are summarized in Tab. II. The main

difference between the functions in Tab. I and Tab. II, is

that the former are integrated over time, while the latter are

evaluated at discrete points along the trajectory. Furthermore,

the basis objective function C1 minimizes the kinetic energy

difference between the demonstration and the trajectory

generated by the PSTFs, instead of minimizing total energy.

Finally, C4 is is a quadratic basis objective function that

optimizes the spline coefficients A to minimize the distance

between the demonstration and q̂.

TABLE II human movement basis objective functions

expressed in terms of the PSTFs’ parameters. C1, C2, C3,

and C4 penalize energy difference, torque, jerk, and spline

approximation error, respectively.

C1
∑m

l=1‖2E1(Q
′

l)− Q̇
′2
l1‖

C2
∑m

l=1‖τ(Q
′

l)‖

C3
∑m−1

l=1 ‖τ̇(Q
′

l, Q
′

l+1)‖

C4
∑n

i=2

∑m

l=1‖fi(Q
′

l)−Q
′

li‖

D. Constraints

We consider two types of constraints for trajectory learning:

(1) dynamic and joint constraints and (2) task-specific con-

straints. Dynamic and joint constraints are generally inequality

constraints, e.g. joint angles and torques are upper and

lower bounded. Task-specific constraints are often equality

constraints, to ensure goal configurations are reached. We

express the dynamic constraints as follows,

Limin < fi(Q
′

l) < Limax l = 1...m, i = 2...n (13)

τmin < τ(Q
′

l) < τmax l = 1...m (14)

where τmax is the maximum and τmin is the minimum
allowable torque, and Limin and Limax correspond to
the joint limits of element i in transformed coordinates. To
minimize unwanted jumps in torque between segments and
preserve continuity of position, velocity, and acceleration,
we impose the following constraints for r = 2...s − 1, i =
1...n− 1.

po
∑

d=0

A(d+1)(r−1)iP
′d
r1 =

po
∑

d=0

A(d+1)riP
′d
r1 (15)

po
∑

d=0

dA(d+1)(r−1)iP
′(d−1)
r1 =

po
∑

d=0

dA(d+1)riP
′(d−1)
r1 (16)

po
∑

d=0

d(d− 1)A(d+1)(r−1)iP
′(d−2)
r1 =

po
∑

d=0

d(d− 1)A(d+1)riP
′(d−2)
r1

(17)

The task specific constraints we consider in this paper are

initial position and path direction, final position and path

direction, and final velocity. These constraints are expressed

in the following equations, for i = 2...n.

fi(Q
′

1) = Q
′

i1 (18)
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po

∑

d=0

dA(d+1)1(i−1)Q
′(d−1)
11 =

Q̇
′

i1

Q̇
′

11

(19)

fi(Q
′

m) = Q
′

im (20)

po

∑

d=1

dAd(s−1)(i−1)Q
′(d−1)
1m =

Q̇
′

im

Q̇
′

1m

(21)

E1(Qm) = ǫ (22)

In eq. (22), ǫ is a small non-zero value. For our implemen-

tation, we used ǫ = 0.00001. A small, but non-zero final

velocity ensures that an unstable equilibrium does not occur

at the goal position, which would require infinite time to

converge. One additional inequality constraint is imposed to

ensure convergence.

E1(Q
′

l) > 0 l = 1...m (23)

The inequality above ensures that the kinetic energy never

falls below zero, guaranteeing q
′

1 is always increasing.

E. Optimization

We optimize torque, jerk, and the trajectories of the robot’s

joints with an iterative constrained linear least squares method.

Assuming the true objective function is expressed as a

weighted sum of the basis objective functions, we define

eq. (24) and eq. (25).

Cp = w
p
1C1 + w

p
2C2 + w

p
3C3 (24)

Cs = ws
2C2 + ws

3C3 + ws
4C4 (25)

Here, Cp and Cs are the objective functions for the parameters

of the PSTFs and splines, respectively. Since Cp is a quadratic

function of the PSTFs’ parameters, the optimal parameters

can be calculated with constrained linear least squares. If C4

is the only non-zero weighted basis objective function, then

Cs is a quadratic function of A. In general, the objective

functions C2 and C3 introduce nonlinear behavior. However,

if we assume that the inertial matrix M and the gravitational

torque g are constant, then the problem is solvable with linear

least squares. The previous assumption is often violated, so

we use a trust parameter θ to limit the step in the solution

direction. Our iterative optimization method is described in

algorithm 2. We alternate between optimizing the PSTFs’ and

splines’ parameters for several iterations.

IV. EXPERIMENTS

We conducted two human subject studies, involving ex-

ercise therapy (experiment 1) and tea making (experiment

2). For each experiment, the participants’ movements were

recorded with a Qualisys motion capture system. Demon-

stration matrices (De and Dw), were constructed and then

converted into correspondence matrices using algorithm 1.

Reference trajectories for DMP were extracted from the rows

of the correspondence matrix. The piece-wise polynomial

Algorithm 2 Optimize Trajectory

Input: Q
′

, Q̇
′

, wp, ws

Output: c, k, A

θ ← 0.2
x← 0
A← initialize to zeros

while x < 10 do

[k, c] = lsqlin(w
p
1C1 + w

p
2C2 + w

p
3C3)

A = (1− θ)A+θ lsqlin(ws
2C2 + ws

3C3 + ws
4C4)

x← x+ 1
end while

order was 6 for all results. Additionally, 12 cut points were

used for the scaption exercise and 6 for the milk pouring

task. In the following sections, we compare our method to

DMP for three different experiments.

A. Experiment 1: Scaption Exercise Movement

Six commonly prescribed therapeutic exercises, namely

shoulder press, lateral raise, forward raise, external rotation,

internal rotation, and scaption were performed by a therapist

(the third author of this paper). Fig. 3 illustrates correspon-

dence values calculated for several of these exercises. In

this experiment, we wanted to show how our approach can

closely mimic the human demonstration, like DMP, while

still generating a smooth motion. To achieve this, all basis

objective function weights, except w
p
1 and ws

4 were set to zero.

This minimizes the velocity and position difference between

the demonstration and the learned motion. The results for

the scaption movement are shown in Fig. 4 and Tab. III. We

achieve similar accuracy, torque, and execution time compared

to DMP.

B. Experiment 2: Milk Pouring Task

The participants performed a tea making sequence com-

posed of seven movements, including: turning an oven on,

pouring water, adding sugar, pouring milk, adding a tea

bag, stirring, and turning an oven off. We are interested

in the milk pouring task because it involves moving a heavy

object with variable weight. In this experiment, we wanted

to show how our approach can optimize the splines’ and

PSTFs’ parameters to minimize torque and jerk. All basis

objective function weights were non-zero, except ws
4. The

optimization generated a significantly different path than the

human demonstration in order to minimize torque. The results

are shown in Fig. 5 and Tab. III. We require substantially

less torque than DMP’s trajectories, to achieve the task in

the same amount of time.

C. Experiment 3: Adaptation to External Load

In this experiment, we wanted to show how our method

adapts its motion in the presence of an added external load,

hence, 1 kg was added to the end-effector for the previous

two movements. The basis objective function weights were

left unchanged, but a 16 (Nm) torque limit was imposed

on the scaption movement. The adapted trajectories for both
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Fig. 3: robot configurations corresponding to the therapist’s demonstrations for shoulder press, lateral raise, forward raise,

and external rotation.

TABLE III mean norm of joint torques from experiments 1,

2, and 3 in (N2m2).

weight Scaption Pour Milk

0 kg 107.9 109.9 31.4 38.2

1 kg 188.9 190.6 84.6 110.6

PSM DMP PSM DMP

movements are shown in Fig. 4 and 5 and torque results

are summarized in Tab. III. For the scaption movement, the

maximum torque experienced during the movement was 16
(Nm), as expected, and 19.5 (Nm) for DMP.

For our experiments, we chose to minimize the deviation

between the robot and therapist for the exercise movement

and to minimize torque and jerk for the milk pouring task.

While the true objective functions for these tasks may be

more complicated, we believe the flexibility of our approach

is applicable to multiple domains. Additionally, the robot

needs to be aware of its dynamic limitations to ensure safe

operating conditions, hence, torque limits are required. This

is especially true when load is added to the end-effector or

when motion is mapped directly from a human demonstration

to the robot.

V. CONCLUSIONS AND FUTURE WORK

We took inspiration from the therapeutic exercise domain to

develop a correspondence mapping from a human demonstra-

tion to the robot. Basis objective functions, analogous to those

seen in human movement literature, were formulated in terms

of the PSTFs’ and splines’ parameters. Linear constraints

on torque, jerk, and joint angles were also developed in

terms of these parameters. Our method successfully generated

trajectories for therapeutic exercises and tea making, with

and without added end-effector loads. This approach further

generalizes the PSM to adapt its trajectories in a more

contextually meaningful way. In the future, we will explore

the possibility of learning the basis objective function weights

from multiple demonstrations.
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D. Kulić, “Human motion segmentation using cost weights recovered
from inverse optimal control,” in 2016 IEEE-RAS 16th International

Conference on Humanoid Robots (Humanoids), Nov 2016, pp. 1107–
1113.

8335

Authorized licensed use limited to: University of New Hampshire. Downloaded on February 12,2021 at 22:14:25 UTC from IEEE Xplore.  Restrictions apply. 


