
Learning Motion Trajectories from Phase Space Analysis of the
Demonstration

Paul Gesel1, Momotaz Begum1, Dain La Roche2

Abstract— A major goal of learning from demonstration
is task generalization via observation of a teacher. In this
paper, we propose a novel framework for learning motion
from a single demonstration. Our approach reconstructs the
demonstrated trajectory’s phase space curve via a linear piece-
wise regression method. We approximate dynamics of trajectory
segments with linear time invariant equations, each yielding
closed form solutions. We show convergence to desired phase
space states via an energy-based analysis. The robustness of
the model is evaluated on a robot for a sequential trajectory
task. Additionally, we show the advantages that the phase space
model has over the dynamic motion primitive for a kinematic
based task.

I. INTRODUCTION

Learning motion trajectories from demonstration data is
probably the most matured area in robotics research on
learning from demonstration (LfD) [5], [3]. The major goal
of trajectory LfD is robust generalization: encoding motion
data in such a way that a similar motion can be generated in
new contexts. A robust trajectory learning algorithm should
have the following properties: 1) be able to learn from
few demonstrations, 2) be robust against spatial perturba-
tion (e.g change in goal and/or starting position, obstacle
avoidance) and temporal perturbations (e.g. an unplanned
obstacle prevents reaching the goal position [9]), and 3) be
able to satisfy various kinematic constraints of the demon-
strated trajectory (e.g. certain velocities need to be achieved
at certain positions). These properties enable a model to
adapt learned trajectories to different environmental contexts,
while preserving the key characteristics of the demonstrated
motion. A flurry of research has been done on learning
complex motions from human demonstrations [1], [15], [14],
[2]. None of the existing trajectory LfD algorithms, however,
exhibits all three properties mentioned above.

This paper proposes a novel approach of motion learning
from a single demonstration that we name the phase space
model (PSM). The PSM approximates second order trajec-
tory dynamics via a linear piece-wise method. The core of
the PSM is the phase space transition function (PSTF) that,
given an initial phase space state (position, velocity), always
converges to a specified phase space state. This enables the
PSM to learn various kinematic constraints in the demon-
strated trajectory. We develop and implement the necessary
conditions to ensure that the PSTF converges to the desired
phase space state. Through a piece-wise combination of

1 Computer Science Department, University of New Hampshire,
Durham, USA {pgesel,mbegum}@cs.unh.edu 2 Department
of Kinesiology, University of New Hampshire, Durham, USA
{Dain.LaRoche}@unh.edu

PSTFs, an approximation of the demonstration is reproduced.
We expand the PSM to multiple dimensions and propose a
method to achieve trajectory synchronization. The PSM is
inherently a time-independent method (since all analysis are
performed in the phase space) capable of dealing with spatial
and temporal perturbations.

II. BACKGROUND

Two methods of encoding low-level motion data have
gained tremendous popularity in the LfD literature: a prob-
abilistic approach [17] and a dynamic system approach [7],
[8].

The probabilistic approach of trajectory learning in [17]
creates a statistical representation of the demonstrated mo-
tion trajectories through Gaussian-mixture modeling (GMM).
This approach learns a time-dependent trajectory distribution
from several demonstrations of the task. The model and its
variants have been used in teaching skills to robots, such as
goal-directed pick-n-place actions [17], [4] and pouring from
cups [2]. The common criticisms of GMM-based trajectory
learning are: the requirement for multiple demonstrations,
the inability to adapt to different goal positions and avoid
obstacles online, and the inherent time-dependence. Being
a time-dependent approach, GMM-based trajectory learning
requires a heuristic to re-index time to generate a new tra-
jectory in the presence of temporal perturbations [9]. Stable
Estimator of Dynamical Systems (SEDS) is dynamic system
theory variant of the GMM-based trajectory learning that
demonstrates robustness in temporal and spatial perturbations
[10]. However, in the SEDS framework, learning a new
motion requires solving a constrained optimization problem.
Additionally, like GMM-based trajectory learning, SEDS
requires multiple trajectory demonstrations.

The dynamic motion primitive (DMP) exploits the stable
point-attractor dynamics of a spring-mass system to en-
code motion data [8]. The stable dynamics naturally enable
generalization in new contexts, such as on-line trajectory
adaptation and obstacle avoidance [7], [8], [18]. DMPs have
been used to teach various skills to LfD-powered robots, e.g.
locomotion [13], T-ball batting [16], playing tic-tac-toe [14],
and drumming [6]. DMPs can encode joint trajectory motion
from a single demonstration. The phase variable, however,
in the DMP is a function of time, which implicitly makes
DMP a time dependent approach. Accordingly, the issue of
temporal re-indexing, as discussed earlier in this section,
occurs when reproducing trajectories learned with DMPs.
Another critical limitation of DMP in learning trajectories
is that DMP only considers the temporal constraint of the

task (i.e., it tries to reach the goal within a specified time).
There are many tasks, however, that require other kinematic
constraints to be satisfied. For example, learning to throw
a ball a specific distance requires a specific velocity and
position combination. Modifications of the original DMP for-
mulations have been proposed to model such behavior [12],
[11]. These modifications, however, will fail if a trajectory
needs to execute multiple instances of such behavior.

The PSM proposed in this paper overcomes several short-
comings of existing trajectory LfD algorithms. The PSM
learns trajectories from only one demonstration. Goals in
the proposed PSM are defined in the phase space and the
PSTF ensures stable transition between any two phase space
states. This enables the model to inherently learn kinematic
constraints in the demonstrated trajectory. Finally, the model
is able to deal with spatial and temporal perturbations (e.g.
change in start position, online obstacle avoidance, and goal
adaptation).

This paper describes the theoretical foundation of the PSM
model along with validation results for two tasks: learning
to feed a person and learning to roll a cylinder a certain
distance.

III. THE PROPOSED APPROACH

The proposed PSM employs linear time invariant systems
to model segmented trajectory dynamics via a phase space
analysis.

A. Fundamental of phase space

Phase space is an n-dimensional manifold that represents
all possible states of a dynamical system. Each point in the
phase space indicates the state of the system at a specific
time. Tracing the time evolution of the state variables from
an initial state generates a phase space curve. The direction
traveled in phase space at any given state is determined by
the velocity function. d~η /dt = V (~η) = (dx/dt, dv/dt)
The velocity function is a vector field in the phase space that
is defined for all possible states.

Fig. 1 shows a phase space representation of two dynamic
systems: an under damped and a critically damped spring-
mass system. Both are models of second order mechanical
systems. In this case, a three dimension phase space is plotted

Fig. 1: Phasemap of two mechanical dynamical systems. On
the left is under damped and on the right is critically damped

with position, velocity, and acceleration. The position and
velocity are independent state variables, while the accelera-
tion is depended. Thus, a second order dynamic system of n
independent variables can be fully represented in a (n + 1)
dimensional phase space.

B. Phase space transition function

We define a PSTF as a dynamic system that reaches
a desired phase space state (position, velocity), given an
initial state. We exploit the properties of conservative vector
fields to develop such a function. A Conservative dynamic
system is a special type of system that conserves certain
properties along its phase space curve, e.g. second order
mechanical systems, without damping, conserve energy. A
potential function exists for these types of systems,

∇f = F

where f is the system’s potential function and F is a
conservative vector field. Given a potential function, the
gradient theorem shows that the work input from the vector
field is path independent.

W =

∫ b

a

F · ds =
∫ b

a

∇f · ds = f(b)− f(a) (1)

The work, W , is the system’s energy input. For a one
dimensional unit mass point particle, (m = 1), the energy
input is stored in the form of kinetic energy (KE) according
to equation (2).

KE =
1

2
ẋ2 (2)

In equation (1), F could be any conservative vector field.
We chose a linear model in the following form,

ẍ = kx+ c (3)

where k, and c are constants. Equation (1) is evaluated with
F = kx + c over the interval [xc, xn] to find the kinetic
energy input.

KE = k

(
x2n − x2c

)
2

+ c (xn − xc) +
ẋ2c
2

(4)

Here, ẋc is the current velocity, xc is the current position,
and (ẋn, xn) is the next phase space state to be reached. We
chose a value for c such that the velocity boundary condition
ẋn is met at x = xn.

c =
ẋ2n − ẋ2c

2 (xn − xc)
+ k

x2n − x2c
2 (xn − xc)

(5)

Since equation (3) is a linear second order system, a closed
form solution exists. Applying the boundary condition that
x = xc and ẋ = ẋc at t = 0, generates the following closed
form solution.

x =

(
xc +

ẋc√
k
+ c

k

2

)
e
√
kt+

 ˙−xc√
k
+ xc +

c
k

2

 e−
√
kt− c

k

(6)
It should be noted that equation (6) meets boundary condi-
tions only if the ẋn has the same sign as (xn−xc) or is zero.
It doesn’t make sense to reach xn coming from xc with a
velocity in the direction of xc.

Equation (6) meets starting and ending boundary condi-
tions, while maintaining k as a free parameter. For this rea-
son, we denote equation (3) as a PSTF. An appropriate value
of k in a PSTF can produce trajectories that approximate the

dynamics of a demonstration. For example, fig. 2 shows how
different values of k generate a wide variety of trajectories.
In fig. 2, each trajectory represents a unique PSTF.

Fig. 2: Trajectories for different values of k in equation (6)
with xc = 0, xn = 1 and (a) ẋc = 0, ẋn = 0. (b) ẋc = 0,
ẋn = 1.

C. Piece-wise PSTFs

The approach of the PSM is to break the phase space into
segments and then approximate each segment with a PSTF.
The first and second numerical derivatives of the demonstra-
tion are required to reconstruct its phase space curve. It is
difficult to get an accurate derivative approximation for noisy
data, consequently, we apply a Gaussian kernel smoothing to
the demonstration before modeling it. The projection of the
three-dimensional phase space onto the position-acceleration
plane can then be modeled with piece-wise PSTFs.

To clarify the piece-wise behavior, equation (3) can be
re-written as follows,

ẍ = knx+ cn (7)

where n is the segment index. Fig. 3 shows the acceleration
of a reaching motion vs. the position. The reaching motion
is segmented into three spatial intervals: [0, .3], [.3, .8], and
[.8, 1]. On the first interval [0, .3], k1 is evaluated in equation
(7) with the x1 = .3 and ẋ1 = 1.6. Once the phase space
state (x1, ẋ1) is reached, the second segment on the interval
[.3, .8] is evaluated with k2. The process is repeated for each
PSTF until the trajectory is complete. In general, a trajectory
segmented into N pieces has N values of k and N + 1
phase space states (x, ẋ). The demonstrated trajectory can be
reproduced via evaluating the value of k that corresponds to
the current spatial interval in equation 7. To allow for online
goal adaptation, the spatial intervals are expressed relative
to the goal’s location. Changing the goal location during the
reaching motion only changes x and cn. The change in goal
position may also cause the current spatial interval being
evaluated to change, hence, changing kn as well.

For this paper, we chose the number of segments (N)
manually and uniformly distributed cut points in time. One
PSTF is required for each time the velocity crosses zero,
hence, the lower bound on N is equal to the number of times
the demonstrated trajectory changes direction. In general, the
accuracy of the trajectory reproduced by the PSM increases
as the number of segments increase.

Fig. 3: The reaching motion demonstration is shown in black
and the model in blue. On the left is the demonstrated
trajectory and the PSM approximation. On the right is the
acceleration-position relationship and the PSM’s linear piece-
wise approximation.

D. Stability

We term the stability of a PSFT as its property to reach a
desired velocity (e.g ẋn) at a desired position (e.g. xn) from
an initial phase space state. Equation (7) does not generate
a stable trajectory for all values of kn. The stability depends
on both the initial velocity and kn. Through an energy-based
analysis, we determine the necessary condition to achieve
stability. If each individual PSTF is stable, then we can
consider the entire trajectory as stable.

Fig. 4 shows the kinetic energy of three trajectories on the
interval [0,1]. These three cases need to be considered: the
blue curve with k < 0 and min(KE) > 0, the orange curve
with k > 0 and min(KE) = 0, and the red curve with k > 0
and min(KE) < 0. The blue curve is stable, the red curve
is unstable, and the orange curve is an unstable equilibrium.
The resulting curves were generated with equation (4). Any
curve where k < 0 is periodic. The amplitude corresponds
to the difference between the two intersection points of the
KE curve with zero, hence, k < 0 is a stable trajectory. This
is shown by evaluating k < 0 in equation (6), which results
in a sinusoid with a constant offset. If k > 0, the result is
an exponential function and inherently unstable. Locations
where the KE curve intersect zero represent turnaround
points, since kinetic energy can’t be negative, e.g. the red
curve will stop at 0.25 and then accelerates toward negative
infinity. The orange curve intersects zero with a slope of zero,
which results in an unstable equilibrium point. The necessary
condition to ensure stability is that the minimum KE on the
interval [xc, xn] must be greater than zero.

Since the KE curves are quadratic, only one minimum
exists and it can be solved for analytically. The derivative of
the KE with respect to x is set equal to zero and solved to
find xmin,

knxmin + cn = 0

xmin = −cn/kn (8)

where xmin is the value of x that corresponds to the mini-
mum kinetic energy. If xmin is on the interval [xc, xn], then
the value of kn needs to be adjusted, such that, KE(xmin) >
0. A constraint on kn is determined by evaluating equation
(4) at xmin.

KE(xmin) > 0

kn

(
(−cn/kn)2 − x2c

)
2

+ cn (−cn/kn − xc) +
ẋ2c
2
> 0 (9)

Equation (9) is quadratic and can be solved to produce an
upper boundary on k, denoted kmax.

kmax <
−B +

√
B2 − 4AC

2A

A =
x2n − x2c
(xn − xc)

xc − x2c −
(

x2n − x2c
2 (xn − xc)

)2

B =

(
x2n − x2c
(xn − xc)

ẋ2n − ẋ2c
(xn − xc)

− 2
ẋ2n − ẋ2c
(xn − xc)

xn + ẋ2c

)
C = −

(
ẋ2n − ẋ2c
(xn − xc)

)2

Fig. 4: Kinetic energy vs. position for three trajectories from
equation (4). The following are the parameters for each
curve: the blue curve: k = −24 , ẋ2

c

2 = 3, the orange curve:
k = 24 , ẋ2

c

2 = 3 , and the red curve: k = 32 , ẋ2
c

2 = 3

The analysis thus far has assumed that the initial velocity
is in the direction of xn, however, this may not always
be the case in the presence of perturbations, e.g. a person
physically pushes the robot arm away from the goal position.
The orange curve in fig. 4 starts at a kinetic energy of 3,
which can have either positive or negative velocity. If the
velocity is away from xn, then it will approach negative
infinity.

One additional stability constraint is applied to ensure the
PSTF reaches the phase space state (xn, ẋn) in the case
that the ẋc in the wrong direction. Equation (7) needs to be
adjusted to equation (10).

ẍ =

{
knx+ cn ẋ ≥ xn−xc

|xn−xc|
m ẋ < xn−xc

|xn−xc|
(10)

In equation (10), m is a positive constant. If the velocity
is in the direction away from xn, a constant acceleration
is applied, until the velocity reaches zero. The value of m
influences how much overshoot in the negative direction the
trajectory will have and can be tuned to the specific robot’s
dynamics.

E. Synchronizing multiple dimensions

One approach to achieve multidimensional trajectories is
to model each dimension separately with piece-wise PSTFs.
The problem occurs when one of the dimensions experience
perturbations, causing the trajectory to become out of sync.
A grasping task requires that the robot gripper comes in at
a certain angle. If the Cartesian dimensions x, y, and z get
out of sync, the robot gripper will approach the goal at the
wrong angle. Despite its time-independent nature, the PSM
can deal with situations that require timing constraints.

Equation (6) can be re-written as a function of its deriva-
tive and then inverted to solve for t as a function of x.

x =
ẋ√
k
+ 2

 ˙−xc√
k
+ xc +

c
k

2

 e−
√
kt − c

k

t =
log
(

˙−xc√
k
+ xc +

c
k

)
√
k

−
log
(
x− ẋ√

k
+ c

k

)
√
k

(11)

The time that the nth segment takes to complete can be
calculated by substituting xn for x, cn for c, and kn for k
in equation (11).

tn =
log
(

˙−xc√
kn

+ xc +
cn
kk

)
√
kn

−
log
(
xn − ẋn√

kn
+ cn

kn

)
√
kn

(12)

The PSM uses a piece-wise combination of equation (10),
consequently, the total time to trajectory completion is the
sum of the time it takes to complete each segment as shown
in equation (13).

te =

N∑
n=0

tn (13)

Each dimension has its own te, which quantifies the progres-
sion through each dimension. To synchronize each dimen-
sion, trajectories with smaller te values should be slowed
down to let the others catch up. We denote the largest te as
tE and adjust equation (10) again.

ẍ =

{
knx+ cn − T ẋ(tE − te) ẋ ≥ xn−xc

|xn−xc|
m ẋ < xn−xc

|xn−xc|
(14)

T is essentially a breaking term and is handpicked in our
implementation. In general, it needs to be large enough, such
that, the trajectories closer to the end of the movement slow
down enough for the ones further from the end to catch
up. The T ẋ(tE − te) term should be on the magnitude
of knx + cn term to have a significant impact. Fig. 5
shows a three-dimensional trajectory with and without the
time synchronization applied. Notice that the x component
starts with a lower te than both y and z. With the time
synchronization included, the x component waits for the
other components to approach 2.5 seconds until its start
moving at its original rate.

Another added benefit to having te = f(x, ẋ) is the ability
to couple different dimensions. This is particularly useful
for grasping task. A time-based function approximation can

Fig. 5: Three dimensional trajectory with and without time
synchronization applied in the bottom and top plots, re-
spectively. The red, blue, and green curves are x, y, and z,
respectively. The components of the demonstrated trajectory
are shown in dashed lines.

model the robot’s end effector orientation R as a function of
any arbitrary dimension’s te. A standard control algorithm
can then be implemented to drive the error between the
reference orientation R = f(te) and the measured orientation
Rm to zero.

F. Collision avoidance

One of the strengths of the PSM is the ability to transition
from one phase space state to another with continuous
velocity. In the presence of an obstacle, if a collision is
detected, ẋn can be set to zero and xn can be set to xob,
where xob is the obstacle location. To limit the maximum
acceleration of the trajectory and required stopping distance,
kn is set to zero. Equation (14) is adjusted again to include
the obstacle avoidance condition,

ẍ =

knx+ cn − T ẋ(tE − te) ẋ ≥ xn−xc

|xn−xc|
m ẋ < xn−xc

|xn−xc|
−ẋ2

c

2(xob−xc)
CD

(15)

where CD is a collision detected flag. For our implementa-
tion, if the line segment from the current position to the goal
position intersects an obstacle, then the collision condition
is triggered.

IV. EXPERIMENTS

We present results from a set of three experiments that
highlight the different properties of the proposed PSM. We
also compare the performance of PSM to DMP for a cylinder
rolling task. A video of the experiments has been submitted
with this paper.

A. Controller configuration

All trajectories were demonstrated to the robot via kines-
thetic teaching. Joint angles were recorded at 500 Hz for
each demonstration. The end effector position and orientation
were calculated with forward kinematics and then smoothed
with a Gaussian kernel to give a better approximation of
the numerical derivatives. One PSM was used for the x,
y, and z components of each demonstration. We coupled
the end effector orientation with the z component’s time
of completion parameter te. For each task, the trajectory
segment spatial intervals were defined with respect to the
goal position.

Fig. 6: Control diagram for the PSM integration with a robot

The control diagram in fig. 6 shows how the PSM was
integrated with a robot. The Cartesian state of the robot’s
end effect was fed into the PSM, which generated Cartesian
accelerations. An inverse kinematic controller then translated
the PSM output to joint angle accelerations (q̈) and sent them
to the robot.

B. Experiment 1: feeding assistant task

In this experiment, we teach the robot to perform a sequen-
tial task: feeding someone with a spoon. The task consists of
five trajectories, including: grasping a spoon, bringing it to a
neutral position, reaching for a bowl, performing a scooping
motion, and reaching to a person for feeding. Out of the
five trajectories, three require goal adaption (see fig. 7). The
position of the spoon, bowl, and user were varied to evaluate
the PSM’s ability to adapt different goal locations. The bowl
and spoon were placed at designated spots on a grid and the
participant’s face location was determined with a standard
face recognition algorithm. Fig. 7 shows the experimental
setup for this task. Four trajectories are shown in fig. 7:
reaching for the spoon in blue, returning to neutral in black,
reaching for the bowl in orange, and reaching for the user
in red. Goal positions were evaluated on a 3x3 grid for the
bowl placement, spoon placement, and user location as seen
in fig. 7, resulting in 45 different trajectory adaptations.

C. Experiment 2: collision avoidance

The setup for the second experiment was the same as the
feeding assistant task, except an obstacle was placed in the
path when the robot brought the spoon to the user. Fig. 8
shows a snapshot of the robot motion in the presence of the
obstacle. The robot was given the collision bounds of the
obstacle in advance. In this scenario, the robot’s y component
decreased its velocity due to the predicted collision. Once
the z component cleared the height of the obstacle, the y
component resumed its normal trajectory toward the user.

Fig. 7: Variety of goal adaptations for three sub-task of the feeding process. The experimental setup is shown on the right.

Fig. 8: The obstacle free task is shown on the right and
obstacle avoidance task is shown on the left.

D. Experiment 3: cylinder rolling task

The task was to roll a cylinder from a designated start
position into a basket placed at the end of the table (see
fig. 9). Rolling the cylinder the correct distance required
the robot’s end effector to come in contact with it at a low
velocity and then accelerate to a high velocity. We evaluated
the PSM’s phase space based goal against the DMP’s time-
position based goal. This task is well suited for the PSM
because it requires the end effect to achieve several phase
space states along the trajectory.

Fig. 9: Experimental setup for the cylinder rolling task. The
cylinder is place at a designated starting point and the robot
attempts to roll the cylinder into the basket at the end of the
table.

Fig. 10 Shows the phase space curves for both the PSM
and DMP trajectories for this task from several stating
positions. The demonstration’s phase space curves are shown
in black. For this task, the cylinder is primary being rolled
in the y direction, hence, the y component velocity is crucial
in whether the cylinder will have enough momentum to roll
across the table. The PSM trajectories reach a maximum

Fig. 10: The three plots on the top show the phase space
curves produced by the PSM for several starting locations.
The three plots on the bottom show the phase space curves
for the DMP. The cylinder was place at y = 0.1 m.

speed of .5 m
s at y = −.1 m, while the DMP trajectories

only reach a maximum speed of .4 m
s . This results in task

failure for this experimental configuration.

V. CONCLUSION

The PSM proposed in this paper originated from the con-
cept of phase space in dynamical systems. We model trajec-
tories by first segmenting the phase space into spatial regions,
where position-acceleration relations are approximated with
linear second order systems. Spatial and temporal flexibility
of this approach is demonstrated through experiments with a
robot. The advantage of the PSM’s phase space based goal
compared to DMP’s time-position based goal is demonstrated
in the cylinder rolling task. The benefits of this framework
are robustness to temporal perturbation via time invariant
dynamics, multidimensional synchronization, learning from
a single demonstration, and the ability to transition between
phase space states with continuous velocity via PSTFs.

ACKNOWLEDGMENT

This work was supported in part by the National Science
Foundation (IIS 1830597).

REFERENCES

[1] S. R. Ahmadzadeh, R. Kaushik, and S. Chernova. Trajectory learning
from demonstration with canal surfaces: A parameter-free approach.
In Humanoid Robots (Humanoids), 2016 IEEE-RAS 16th International
Conference on, pages 544–549. IEEE, 2016.

[2] B. Akgun, M. Cakmak, J. W. Yoo, and A. L. Thomaz. Trajectories
and keyframes for kinesthetic teaching: A human-robot interaction
perspective. In Proceedings of the seventh annual ACM/IEEE in-
ternational conference on Human-Robot Interaction, pages 391–398.
IEEE/ACM, 2012.

[3] B. D. Argall, S. Chernova, M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and autonomous systems,
57(5):469–483, 2009.

[4] S. Calinon, Z. Li, T. Alizadeh, N. G. Tsagarakis, and D. G. Caldwell.
Statistical dynamical systems for skills acquisition in humanoids. In
Proc. IEEE Intl Conf. on Humanoid Robots (Humanoids), Osaka,
Japan, 2012.

[5] S. Chernova and A. L. Thomaz. Robot learning from human teachers.
Synthesis Lectures on Artificial Intelligence and Machine Learning,
8(3):1–121, 2014.

[6] A. B. D. Pongas and S. Schaal. Rapid synchronization and accurate
phase-locking of rhythmic motor primitives.

[7] A. J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, and S. Schaal.
Dynamical movement primitives: learning attractor models for motor
behaviors. Neural Computation, 25:328373, 2013.

[8] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Movement imitation with
nonlinear dynamical systems in humanoid robots. In In IEEE Interna-
tional Conference on Robotics and Automation, page 13981403. IEEE,
2002.

[9] S. M. Khansari-Zadeh and A. Billard. Imitation learning of globally
stable non-linear point-to-point robot motions using nonlinear pro-
gramming. In 2010 IEEE/RSJ International Conference on Intelligent
Robots and Systems, pages 2676–2683, Oct 2010.

[10] S. M. Khansari-Zadeh and A. Billard. Learning stable nonlinear

dynamical systems with gaussian mixture models. IEEE Transactions
on Robotics, 27(5):943–957, Oct 2011.

[11] S. M. Khansari-Zadeh, K. Kronander, and A. Billard. Learning to play
minigolf: A dynamical system-based approach. Advanced Robotics,
26:1967–1993, 2012.

[12] J. Kober, K. Mlling, O. Krmer, C. H. Lampert, B. Schölkopf, and
J. Peters. Movement templates for learning of hitting and batting.
In 2010 IEEE International Conference on Robotics and Automation,
pages 853–858, May 2010.

[13] J. Nakanishi, J. Morimoto, G. Endo, G. Cheng, S. Schaal, and
M. Kawato. Learning from demonstration and adaptation of biped
locomotion. Robotics and Autonomous Systems, 47:7991, 2004.

[14] S. Niekum, S. Osentoski, G. Konidaris, S. Chitta, B. Marthi, and
A. G. Barto. Learning grounded finite-state representations from
unstructured demonstrations. The International Journal of Robotics
Research, 34(2):131–157, 2015.

[15] C. Paxton, F. Jonathan, M. Kobilarov, and G. D. Hager. Do what
i want, not what i did: Imitation of skills by planning sequences of
actions. In Intelligent Robots and Systems (IROS), 2016 IEEE/RSJ
International Conference on, pages 3778–3785. IEEE, 2016.

[16] J. Peters and S. Schaal. Policy gradient methods for robotics. In Int.
Conf. Intelligent Robots and Systems. IEEE, 2006.

[17] A. B. S. Calinon, F. Guenter. On learning, representing, and gener-
alizing a task in a humanoid robot. IEEE Transactions on Systems,
Man, and Cybernetics, Part B: Cybernetics, 37(2):286–298, 2007.

[18] A. B. S. Mohammad Khansari-Zadeh. Learning stable nonlinear
dynamical systems with gaussian mixture models. IEEE Transactions

on Robotics, 27(5):943–957, 2011.

