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Abstract— This paper presents the iterative development
of an artificially intelligent system to promote home-based
neurorehabilitation. Although proper, structured practice of
rehabilitation exercises at home is the key to successful recovery
of motor functions, there is no home-program out there which
can monitor a patient’s exercise-related activities and provide
corrective feedback in real time. To this end, we designed a
Learning from Demonstration (LfD) based home-rehabilitation
framework that combines advanced robot learning algorithms
with commercially available wearable technologies. The pro-
posed system uses exercise-related motion information and
electromyography signals (EMG) of a patient to train a Markov
Decision Process (MDP). The trained MDP model can enable an
agent to serve as a coach for a patient. On a system level, this is
the first initiative, to the best of our knowledge, to employ LfD
in an health-care application to enable lay users to program an
intelligent system. From a rehabilitation research perspective,
this is a completely novel initiative to employ machine learning
to provide interactive corrective feedback to a patient in home
settings.

I. INTRODUCTION

Home systems for neurorehabilitation are currently de-
veloped around the concept of serious gaming [14]. The
key idea is to enable a patient to interact with a (virtual
or augmented) game environment using motor movements
that are required for rehabilitation. Custom-designed games
played using Nintendo Wii [7], Sony PlayStation [10] and the
Microsoft Kinect [11] are the state of the art in technology-
based home rehabilitation. Standard game controllers provide
limited flexibility when modifying the underlying control
mechanism to suit patient-specific needs, and often exhibit
poor motion tracking accuracy [16]. In recent years Microsoft
Kinect has gained huge popularity in game-based motor
rehabilitation research [6].

The Kinect-based systems, however, have their own limita-
tions including the requirement of a well-designed workspace
[8] as well as the occlusion problem during rehabilitation
exercises [13]. In addition to these, a common pitfall of the
current game-based approaches to motor rehabilitation is the
inability to monitor and measure a patient’s progress and
adherence to the rehabilitation regimen [16]. For example,
none of the existing game-based systems have the ability to
detect and correct compensatory movements that a child may
use while practicing at home [5]. Another limitation of these
systems is their dependence on the developer. Each program
generally comes with a preset range of options that can
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only be modified by the developers in order to incorporate
any unique, patient-specific needs. This may greatly hinder
the mass deployment of game-based systems at clinics and
homes.

Advanced machine learning algorithms can fill these gaps
by creating intelligent agents which can communicate with
lay users to learn rehabilitation exercises and, later, provide
interactive guidance to a patient in real-time. To this end we
design an intelligent home rehabilitation (IHR) system which
will bring the skills of a therapist to a patient’s home through
the use of interactive machine learning

Rehabilitation exercises are essentially a sequence of
structured motions of different parts of the body and learning
motion sequences from demonstration data is an active
research domain in robotics. A large body of research in
robot learning and manipulation is dedicated to designing
algorithms that can extract policies (a mapping between
observations and actions) from motions demonstrated by
humans so that robots can mimic those human movements
[2]. This approach is known as learning from demonstration
(LfD). LfD is a framework for enabling an artificial agent to
learn new tasks from examples provided by a teacher.

LfD [1] has gained popularity in Human-Robot Interaction
research, based on its premise that, one can teach a robot
new skills simply by demonstrating these skills [12] without
requiring knowledge of robotics or programming. However,
almost all of the contemporary LfD algorithms perform well
only in scenarios where experts strictly supervise the en-
tire operation of learning and demonstration. The presented
framework aims to place LfD powered intelligent systems
(e.g virtual agents, robots) in unsupervised non-laboratory
settings such as in the clinic or in a patient’s home.

This paper presents the development of the IHR. As the
IHR is a highly patient-centered technology, the needs and
expectations of the end-users (in this case, therapists and
patients) are required to be reflected in the design of the
algorithm and user interfaces. Accordingly, we observe an
iterative process in the design of the IHR.

At system level, the paper presents a novel attempt to
employ LfD in a health-care application where lay users
can program and evaluate an LfD-powered intelligent sys-
tem. From a rehabilitation research perspective, this is a
completely novel initiative to employ machine learning to
provide interactive corrective feedback to a patient in their
home environment.
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II. A LFD BASED INTELLIGENT HOME REHABILITATION
SYSTEM: THE ITERATIVE DEVELOPMENT PROCESS

The Intelligent Home Rehabilitation (IHR) system uses
two commercially available technologies: two Myo armbands
and a pair of augmented reality (AR) eyeglasses (Fig. 1) or
another Android based device, such as a tablet. The system
is expected to work in the following way:
• During a clinic visit, a therapist will demonstrates new

exercises to a patient
• The wearable components of the IHR system gather and

process the user’s motion and electromyography (EMG)
data as they perform the exercise and train a Markov
Decision Process (MDP) model.

• The MDP model will drive the decision process of a 3D
avatar that will appear on the display of the augmented
reality eyeglasses. At home, the patient will use the
same sensors and an assigned pair of AR glasses to
practice the exercises. The 3D avatar will monitor the
patient’s practice and will provide interactive guidance
when required.

To this date, the IHR system has gone through two design
iterations: 1) An initial prototype was developed and eval-
uated by (technical) experts for technical feasibility and 2)
The initial prototype was retrofitted based on the suggestions
from the technical experts, and evaluated by lay users. The
following sections describe these two development cycles.
The research performed during the second development cycle
is the contribution of this paper.

A. First Development Cycle

During the first phase we designed an IHR system which
can 1) learn a motion sequence from multiple demonstrations
while analyzing motion and EMG signals and execute it
through a 3D avatar 2) track the activity of a person, identify
when and, how they deviate from the learned exercise and
provide corrective feedback. The technical feasibility of the
system was evaluated through an Institutional Review Board
(IRB) approved study [17]. For the sake of continuity we
briefly describe the first prototype and its evaluation by
technical experts.

1) System Description: While wearing an armband, which
streams Inertial Measurement Unit (IMU) data and EMG
signals, a user mimics a demonstrator as he performs a
rehabilitation exercise. After multiple demonstrations the fea-
ture vectors corresponding to the filtered and downsampled
motion and EMG data are considered as system states and are
clustered using the K-means algorithm. The clustered feature
vectors are also used to train a K-nearest-neighbor (KNN)
classifier that classifies each incoming feature vector (during
the user’s practice at home) into one of the existing labels.
The system also generates a score based on the accumulated
reward assigned by the MDP from different state transitions.

When a user practices with the trained system at home,
a 3D avatar demonstrates the entire exercise and encourages
the user to perform it on their own. The avatar tracks the
user’s movements and, based on the training data, displays

the progress the user has made toward correctly performing
the exercise, the avatar, using the trained MDP model, can
also provide corrective feedback by repeating the exercise
from the last correct point the patient had reached. Technical
details are available in [17].

2) Training and Evaluation by Technical Experts: A study
was conducted to investigate the technical feasibility of
the system. Three participants, all familiar with robotics
but not the developed system, tried the system in a lab-
based setting and provided their feedback. The scores of
the different participants were analyzed along with video
data to investigate if they reflected their actual performance.
Participants were asked then to freely comment on how
helpful they considered the system to be, how the system
could be improved, and whether they would recommend it
to friends or family. Some basic fundamental conclusions
were derived from their answers.
• MDP model: The MDP model tracks states based on

data from only the current time instant and, therefore,
fails to deal with exercises that have repetitive sequences
such as drawing an ’8’ shape. Inclusion of state history
is required to enable the model to identify repetitive
actions.

• 3D avatar: The mapping of motions between the human
and the avatar needs to be accurate, to avoid confusion.

• Score: The evaluation of user performance needs to be
more intuitive and should reflect the improvement of a
user from a clinical standpoint.

• User interface: Lay users cannot deal with complex
programs and prefer simple and intuitive interfaces.

• Utility: If technical issues can be resolved, the idea of
helping a patient follow a rehabilitation regimen through
an intelligent agent has a huge potential to be embraced.

B. Second Development Cycle

Based on these results, we retrofitted the design of the IHR
system. The main changes are summarized in this section.
• Tracking of a user’s current exercise state now considers

a history of previous states. This modification enables
the IHR to provide corrective prompts in a more ac-
curate way for repetitive exercises. In the redesigned
system, states are still assumed to be fully observable
but at a given time, similar to a partially observable
Markov decision process (POMDP), we evaluate the
most likely system states based on a N-gram based
analysis of previous states. Unlike POMDPs, however,
we do not maintain a belief over all system states.

• The system now uses two armbands: one on the forearm
and the other on the upper arm. This improves the
mapping between arm motion and the 3D avatar. The
system still runs in real time.

• A score function that better reflects the user’s perfor-
mance has been designed.

• Two interfaces, one for the demonstrator/therapist and
the other for the patient, have been designed. Speech
based interaction was added to accommodate users with
limited upper limb mobility.
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• Finally, the redesigned prototype has been tested with
lay users: a physical therapist (a co-author of this paper)
as a demonstrator and three clinical science students
as patients. Each patient used the system at home for
three days without any supervision or assistance from
the system developers.

In the following sections we present the current IHR proto-
type.

1) System Description: The system was implemented in
the Robot Operating System (ROS). Each Myo armband
(Fig. 1) is equipped with a 9 degree-of-freedom inertial
measurement unit (IMU) and 8-channel EMG sensors. The
3D avatar that acts as a virtual therapist can be projected
either on the display of a tablet or an R-7 AR eyeglasses (Fig.
1). The function of the system is separated in two stages:
Training and Coaching. A graphical outline can be seen in
figure 1.

Fig. 1. A: The wearable components of the system, the R7 AR glasses
(top) and the Myo armband (bottom). B: Outline of the IHR framework

Training: During this phase the therapist guides a patient
to perform the exercises while tagging the critical points
of the exercise using a voice recognition interface. Simple
speech-based interaction enables the therapist to teach the
IHR system different exercises that are tailored to each pa-
tient’s need without having to undergo a specialized training
process to use the system.

Data Pre-processing: The IMU and EMG data are filtered
and normalized. In the case of multiple demonstrations of the
same exercise, the signals are aligned using dynamic time
wrapping [4]. A 5-variate Gaussian Mixture Model (GMM)
is generated to model the trajectories [3]. Using Gaussian
mixture regression a continuous trajectory is displayed by
the 3D avatar. We use the motion and EMG data to represent
state components. The state vector is defined as :

Xn×36 = [α̃EMGn×16IMUn×20] (1)
Where:
• n is the number of data points
• α̃ is a weight factor for the EMG signals (default: 1)

These vectors are used as a component to create “critical
points” which will be described in the following section.

Critical Points: Critical points (C.Ps) are defined as the
points significant for the exercise, for example, the endpoints
for the different parts of the exercise. During a demonstration
the therapist uses pre-designated voice commands to signify
when a C.P. is reached. After the exercise demonstration
has been completed, K-means clustering is used to identify
clusters of C.Ps that represent the states. If the tagging
process has produced N tags, we iterated from 0.5N−1.5N
(in the previous version the total time T of the exercise
was used instead of N ) and use the Silhouette score [15]
to determine the best number of clusters, and train a KNN
classifier to assign labels to incoming data vectors. These are
also the points the system uses to learn a task and evaluate
the performance of the patient.

Given a series of C.Ps {O1, ..., Oi}, C.P. Oi+1 can be
determined by an n-gram model generated by the training
data. N-grams are usually applied in Natural Language Pro-
cessing where each of the N components could correspond
to thousands of words. In such a case even a small N-gram
(≈ 7) would be sparse enough to significantly slow down
computation. In this case however, because we usually have
a small number of classes of C.Ps (. 20) we can allow states
being represented as a tuples of six C.Ps, where the last item
represents the last critical point reached.

In the case where there are not six available C.Ps, ei-
ther because the exercise is too short, or because we are
representing the starting portion of the exercise, we use a
”wild-card” entry as the first item, that means that any entry
in that position will be counted, treating the 6-gram as a
5-gram. Special ”start” and ”end” entries are also used. In
summary, the training phase consists of clustering the data,
constructing the classifier and building the n-gram from the
clustered labels.

Exercise Model Creation: Using the n-gram model we
would use critical points {O1, ..., Oi} to derive point Oi+1.
However the patient often fails to recreate the exercise
faithfully, which means that the C.Ps produced do not fit
into any type available from the training data. In such a case
we could use point Oi−5 as a wild card and use the last 5
points to make the prediction. This would be equivalent to
summing over all values of Oi−5 as:

Õi+1 = argmaxOi+1
P (Oi+1|Oi−4Oi−3...Oi)

= argmaxOi+1

∑
Oi−5

P (Oi−5)P (Oi+1|(Oi−5Oi−4...Oi)

(2)
However, in practice it proves more efficient to count all the
n-grams derived from the training data instead of computing
the marginal distribution from 7-grams. This can be done us-
ing equation 3. Algorithm 1 describes the prediction process
for the next C.P.

P̃ (Oi+1|(Oi−mOi−m+1...Oi)

=
count(Oi−mOi−m+1...OiOi+1)

count(Oi−mOi−m+1...Oi)

(3)

Using six C.P.s to represent states our system can reach the
same C.P. multiple times. In reality n-grams are discretized,
compact representations of trajectories, with each C.P. repre-
senting a sample of the trajectory. In the current implemen-
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Algorithm 1 Predict Next Critical Point
1: procedure NEXTPOINTPREDICT(M, S)
2: M : the set of critical points created during training
3: S = [Oi−5, Oi−4, ..., Oi]
4: while S is not empty do
5: if S 6∈ M then . M maps S to Oi+1

6: S.pop() . Pop first item
7: else
8: return M [S] . Oi+1 = M [S]
9: end if

10: end while
11: return None
12: end procedure

tation the sample points are categorized and mapped from
left to right. A more generalized representation would be:

˜Seg(t, t+ 1) = M [argminS∈M.keysDist(seg(t−m, t), S]
(4)

Where:
• Seg(t1, t2) is the segment of the trajectory between t1

and t2.
• Dist(S1, S2) is the distance between two trajectory

segments.
• M [S] is the mapping of a segment S to its most likely

successive segment for the time period (t, t+ 1)

When formulating the system as an MDP we use the IMU
and EMG data as the MDP actions. By using training data to
learn the next most likely C.P. we also learn the transitional
probabilities used in the MDP. The reward function used is:

Ra(s, s′) = P (s|s′) = P (Oi−5)P (Oi+1|(Oi−5Oi−4...Oi)
(5)

This reduces the model to the n-gram model based on C.Ps.
The action returned by the MDP policy will be same with the
most likely C.P. predicted by the n-gram model. By correctly
identifying the patient’s action and C.P., the avatar can give
a prompt if the user that has missed the correct action by
performing a demonstration of the exercise segment between
the current and next point.

Having trained the MDP model we can learn its policy
function π(s) that will choose the optimal action α in each
state s, maximizing the expected total reward (equation 6).

tmax∑
t=0

γtRat(st, st + 1) (6)

Using the n-gram representation the model can incorporate
more complex reward functions. Since the system’s current
goal is to mimic the demonstrations, and provide prompts in
the same manner, this reward function is sufficient and fits
the nature of the tested rehabilitation tasks.

In summary the MDP components of the system are :
• S: states represented by a tuple of six C.Ps, produced

by clustering the training data
• A: Xn×36 = [α̃EMGn×16IMUn×20], described in 1
• Pa(s, s′):P (s|s′) = P (Oi−5)P (Oi+1|(Oi−5Oi−4...Oi)

as described in equation (5)

• Ra(s, s′) : same as the transitional probability
• γ : 0.9

Coaching: During this part, the patient uses the 3D avatar
to practice the exercises. They select one of the available
exercises and the 3D avatar demonstrates the exercise using
the model that was created in the previous step(e.g. Fig. 2
shows the 3D avatar showing a sequence of learned arm
movements). It is then the patient’s turn to perform the
exercise. As the patient moves their arm the avatar mimics
the motions. During this phase, the EMG sequences of the

Fig. 2. The 3D Avatar demonstrating how to draw a simple sequence of
movements, as an example of a rehabilitation exercise, which the user has
to follow.

armbands are aligned with the ideal sequences, and the best
alignment is found using Dynamic Time Wrapping (DTW).
The distance between the two is used as the “EMG cost”.
Similarly, we calculate the trajectories of orientation coor-
dinates from the IMU sensors and calculate the “orientation
cost”. DTW also gives an alignment cost for each alignment
that indicates the amount of modification that was necessary
in the time domain to align the signals. The evaluation
rewards the user for reaching the C.P.s at the same times
as shown in the demonstration. Penalties are incurred for
performing the exercise too quickly or too slowly. The user’s
score is calculated as:

score = 100exp[−α(Demg1 +Demg2)

−β(DIMU1
+DIMU2

)− γ∆T ]− 8×Nprompts

(7)

Where:

• DIMUx
are the euclidean distances between ideal and

user trajectories for IMU signals of armband x
• DEMGx

are the euclidean distances between ideal
trajectories and user trajectories for EMG signals of
armband x

• ∆T = (T−Tdemo)
Tdemo

is the relative difference in exercise
execution duration

• Nprompts is the number of prompts provided in a trial

The values used for α, β, γ were 0.08, 0.25, 0.05 respec-
tively. These parameters encourage the user to complete the
exercise as fast as possible, but note that if we use the
absolute difference to calculate ∆T we encourage the user
to complete the exercise in the same amount of time as the
demonstration.

2) User Interfaces: Two user interfaces have been de-
signed based on a consultation with a rehabilitation scientist.
The first is the training interface which is used by a therapist
at a clinic to train the IHR system and a patient to perform
some rehabilitation exercises. The second is the patient in-
terface which is used by the patient at home. The patient can
interact with the 3D avatar to receive corrective prompts and
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assistance only through the patient interface. Both interfaces
offer the provision of natural voice based communication.

Training Interface: The training interface (Fig. 3) is
used by the therapist to create the models for up to three
different exercises. The therapist begins by launching the
Myo armbands (“Launch Myo” button). The accumulation
of drift is compensated by the frequent re-calibration of the
Myo armbands (“Calibrate Myo” button). The “Clear” button
is used to clear training data from previous sessions. “Train
Classifier” initiates the training process, where the therapist
assists the patient to reach the C.P.s of each exercise. The
therapist tags those C.P.s by saying a designated word. The
“Begin Trial” button is used to create the exercise model as
discussed previously.

Patient Interface: The patient interface (Fig. 3) is used by
patients during their practice sessions. The interface is de-
signed to be controlled through voice commands but, mouse-
based control is also available. The colored indications on the
right side show the status of different hardware components:
green corresponding to ‘connected’ and red corresponding
to ‘not connected’. When connected, the voice commands
issued are displayed below the “Speech Detected” label. By
using the “Calibrate Myo” button, the user can re-calibrate
the armbands. “Task x” initiates the demonstration of task
number ‘x’. The demonstration can be stopped with the
“Skip Demo” button. Users can use the “Stop Practice”
button to stop practicing and display their score and how
many times they has practiced the exercise. “Home/Reset”
will stop the current task and reset the exercise counter.
Using the voice command “Help”, a demonstration of the
next segment of the current exercise is initiated.

3) Pilot Study: We conducted an IRB approved pilot
study to evaluate the prototype with a group of lay users.

Participants: A rehabilitation scientist acted as the ther-
apist. Three female undergraduate students majoring in ex-
ercise physiology (aged 18 − 22) participated in the study
as ‘patients’. Each patient completed the following ques-
tionnaire consisting of five questions. The responses were
recorded in a 5-point Likert scale (Agree, Somewhat Agree,
Neutral, Somewhat Disagree, Disagree) to measure a partic-
ipant’s exposure to modern technology.

1) I like to keep up with the latest technology.
2) I like the idea of using technology to reduce my

dependence on other people.
3) I feel confident that I have the ability to learn to use

technology.
4) Technology makes life easy and convenient.
5) I enjoy the challenge of figuring out high tech gadgets.

The responses indicated that all participants were familiar
with everyday technology and overall, had a positive attitude
toward technology.

Experimental Protocol: The study consisted of two
phases. During the first phase, the therapist provided hand-to-
hand demonstrations of three exercises to each of the three
patients using the training interface (Fig. 3). One exercise
was the same for all patients while each patient was assigned
two other unique exercises. Each patient was tasked with

practicing these three exercises at home, twice a day for
20min-30min using the 3D avatar and the patient interface.
A brief training of how to use the patient interface was also
provided to each of the three patients.

During the second phase, each patient used the system
at home as prescribed by the therapist. Afterwards, they
were asked to answer the following questions regarding
their impressions of the IHR as a program to help follow
a rehabilitation regimen. Responses were recorded on the
same 5 point Likert scale as the initial questionnaire.

1) It was easy to set up the hardware
2) It was simple to start up the program
3) It was intuitive to follow the program
4) I was compliant with the program
5) I felt that I was receiving rehabilitation every day
6) I enjoyed this home program
7) I feel that the 3D avatar is interactive and understands

what I am doing
8) The home-program helped me to perform the exercise

when I was confused about what to do next
9) I would follow the directions the home program gives

me on how to perform the exercise correctly
The participants were also asked to comment on the system
in their own words. Other than the initial training, partic-
ipants did not receive any expert supervision or technical
support for the system. The study was intentionally designed
in this way in order to investigate the potential of an LfD-
powered system to be operated by lay users.

III. RESULTS AND ANALYSIS

The small number of participants did not justify statis-
tical analysis of the survey data. Instead we analyzed the
participants’ responses (Fig. 4) using descriptive statistics
in order to understand the lessons learned from the second
development cycle.

All the participants agreed that the system was easy to use,
except for the hardware setup process. With respect to clin-
ical utility and potential benefit for therapeutic applications,
all participants agreed that they would follow the directions
provided by the system to follow their regimen. Two of the
participants thought that the IHR system did not feel like a
“virtual therapist” when they practiced at home. The inability
of the system to provide physical assistance contributed to
this negative attitude toward the IHR.

With respect to the technical elegance of the IHR system,
all participants reported that although the avatar was interac-
tive, it did not provide enough feedback to them to proceed
when they were stuck during an exercise.

With respect to perceived enjoyment, only one patient
had a clearly positive attitude towards the system (one
was neutral and the third had a negative opinion). All
participants commented that the IHR was not motivating
or engaging enough and suggested that providing more
rewards/encouragement for the patient in a personalized
way and creation of an interactive game environment can
significantly increase the appeal of the system. The re-
sponses emphasize the fact that despite the intelligence of
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Fig. 3. Left: The trainer interface. Middle: The patient interface. Right: The therapist (labeled T) assisting one of the participant (labeled P) to perform
an exercise, while using the training interface.
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Fig. 4. Responses from the post-study questionnaire

the underlying system, faulty hardware drastically reduces
the perceived overall quality of a system [9].

Finally, all participants agreed that they would recommend
a similar system for home rehabilitation once all of their
concerns are resolved.

IV. CONCLUSIONS AND FUTURE WORK

In this paper we present the iterative development of a
novel intelligent system for home-based neurorehabilitation.
The presented system, inspired by the principle of LfD,
enables therapists to train a system that demonstrates reha-
bilitation exercises based on personalized motion data and
muscle activities. It also provides the patients with the ability
to practice the exercises at home with expert supervision
through a virtual agent.

During the second development cycle we evaluated the
system with lay users. Results show that even though the
intelligent system can learn arbitrary exercises from simple
demonstrations and help a patient to practice at home, the
user interfaces require modifications in order to be engaging
and motivating.
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