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Abstract— Sequential tasks, such as many activities of daily
living, typically have innate temporal structures. Understanding
these temporal structures can greatly benefit the learning of
these tasks from visual demonstrations. Learning temporal re-
lations from un-engineered video however is a challenging fron-
tier that is largely under explored both in computer vision and
vision-based learning from demonstration (LfD) research. This
paper proposes Deep Interval Temporal Relationship Learner (D-
ITR-L), a pipeline that extracts rich temporal relations among
visual features in the video. D-ITR-L acts as a wrapper building
on the spatial features learned by any standard convolutional
neural network (CNN)-based video inference architecture. We
use a Graph Convolutional Network (GCN) in concert with D-
ITR-L to infer discriminatory temporal relations from video.
We evaluate the effectiveness of D-ITR-L learned features in two
contexts: vision-based policy learning of a block-stacking task
by a robot and activity recognition from two benchmark video
datasets namely furniture construction [14], [30] and recipe
following [20]. Our code is available at [5].

I. INTRODUCTION
Temporal relationships that exist among spatial visual

features, hereafter referred to as temporal features, are key to
understanding sequential tasks. In the context of a sequential
task, such as making tea, temporal features can describe the
order of events (water is boiled before it is poured), when
and how spatial features overlap (the teabag and spoon were
visible simultaneously), and repeated spatial patterns (sugar
was added to the cup twice). Temporal features are useful in
settings where spatial features are no longer discriminatory
due to their abundance in the environment. By relating
how spatial feature expression evolves over time, instead of
just spatial feature presence, we build an information-rich
representation of the world that directly benefits inference
from visual demonstrations. In this paper, we are interested in
learning temporal features from videos and leveraging them
to conduct inference on sequential tasks.

Convolutional neural networks (CNN), because of their
unparalleled success in identifying visual features from im-
ages and videos [10], are the standard for autonomous visual
feature identification. CNNs, therefore, lie at the heart of
many end-to-end frameworks for vision-based activity recog-
nition [32], [35] and LfD policy learning [24], [25]. However,
contemporary CNN architectures are ill-equipped to robustly
recognize temporal features [38], [40]. Deep learning ap-
proaches such as recurrent neural networks (RNN) and
3D convolutional filters, known for their temporal learning
ability, describe temporal relationships among visual features
in a duration-specific manner [40], [42]. Subsequently, these
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Fig. 1: The 13 Interval Temporal Relationships

approaches can scale poorly to long videos and have diffi-
culty generalizing to novel data [17]. This paper focuses on
two issues that make end-to-end learning of temporal features
from videos challenging:

1) Variations in Duration: The onset of a spatial feature in
a video and the duration over which that feature is expressed
are rarely consistent between examples. For instance, the
action ‘pouring from a pitcher’ may occur over 3 seconds
or 30, depending on the persons demonstrating the task.
Most CNN-based architectures are duration-specific and use
multiple representations to capture this activity (discussed in
Section II). If the temporal information were, instead, learned
in a duration invariant manner, the same representation would
capture both observations. For example, if “X” is a set of
spatial features that shows the start of the ‘pouring’ event
and “Y” is a set of spatial features corresponding to the
end of the same event, an abstract description such as “X”
before “Y” can characterize both observations (3s and 30s),
without mentioning their duration. Allen’s Interval Algebra
describes 13 such abstract interval temporal relationships
(ITRs) (Fig. 1). Use of abstract temporal relationships among
spatial features is a great way to achieve a duration invariant
representation of time. This approach has yet to be explored
in CNN-based video inference applications.

2) Video-scale features: Videos of sequential tasks can last
upwards of several seconds throughout which significant, and
sometimes cyclical, features may be scattered. Boiling water
for tea occurs in several steps: adding water to the kettle,
boiling the water, and pouring the water into the teapot.
Ensuring that each event is expressed in order confirms
that the task was completed correctly. Similarly, the same
activity could repeat a specific number of times, such as
adding spoonfuls of sugar to a teacup. Recognizing these
examples requires parsing the entire video as opposed to
a part of it. Many CNN-based methods claim to capture
video-scale features, but these approaches do so at the cost
of fidelity [42] or computational resources [41]. The natural
inclination to isolate these patterns via segmentation of the
video is naive, requiring substantial annotation of the training



dataset or expert domain knowledge [3]. Instead, video-scale
features are best characterized through the use of a graphical
structures that directly relate distant features.

The state-of-the-art in both vision-based LfD and com-
puter vision research has lacks a holistic solution to these
issues. Contemporary video inference architectures were
designed with an innate spatial-bias [37] and have been eval-
uated on benchmarks that reflect this bias [2]. Subsequently,
the importance of temporal features and the methods for
extrapolating them have not yet been adequately investigated.
To that end, we propose Deep Interval Temporal Relationship
Learner (D-ITR-L), a framework for identifying the temporal
features present in video. D-ITR-L is a wrapper that uses
CNN-learned spatial features in concert with Allen’s Interval
Algebra [1] to capture and describe the temporal features
present in a video. Our approach combines abstract temporal
relationships with a graphical structure to capture video-scale
features in a duration invariant manner. The Graph Convolu-
tion Network (GCN) is a natural approach to modelling this
data and we use it to make high-level inferences about video
observations. In this paper we show that D-ITR-L is a highly
effective approach to modelling human-led demonstrations
of sequential tasks that can lead to improvements in activity
recognition and policy learning.

II. RELATED WORK

We discuss how vision-based LfD policy learners and
CNN-based computer vision methods fail to address the chal-
lenges associated with learning temporal features: variations
in duration and video-scale features.

A. Policy Learning

Contemporary vision-based LfD architectures leverage the
feature learning properties of CNNs in their design. Many of
these models are designed for low-level control using single
frames or short video clips [23], [24], [25], [36]. They do
not encounter variations in duration or issues representing
video-scale features. High-level policy learners using vision
typically rely on simplifying assumptions [7], [13] or expert
knowledge [11], [29] when implementing perception. The
exception is our earlier work [6] which used a CNN to teach
a robot a behavioral therapy from full-length video.

B. Computer Vision

Understanding temporal features is a goal of video-
recognition research. Cao et al. [2] discuss the spatial focus
of older video datasets and the interest in representing
temporal features in newer datasets. However, real-life se-
quential tasks have a greater spatial and short-term focus than
the most temporally-focused datasets by computer vision
standards ([12], [22]).

CNN-based approaches to representing time generally fall
into one of three categories (Table I): integrated models learn
spatio-temporal features with 3D-convolutions, interleaved
models alternate spatial and temporal feature learning, and
separate methods learn temporal features after spatial fea-
tures (through either convolutions (CNN) or recurrent models

Integrated Interleaved Separate-CNN
MML [18] TPN [38] TCN [19]

SlowFast [9] TSM [21] Multiscale TRN [41]
ECO [42] STM [15] Separate-RNN
I3D [4] TrajectoryNet [16] ConvGRU [8]

2-stream [27] R(2+1)D [31] CNN-LSTM [34]

TABLE I: Popular CNN Models for Video Inference.

Fig. 2: The D-ITR-L Pipeline. References are for Section III.

(RNN)). These architectures fail to address the two issues
of temporal feature learning. They do not develop duration
invariant temporal representations. Integrated, interleaved,
and separated-CNN models represent time explicitly in terms
of elapsed duration. Separated-RNN methods can potentially
generate duration invariant representations by aggregating
adjacent frames together if feature expression is constant.
But, this is unrealistic and RNNs overfit to noisy data [40],
[42]. These methods also fail to generate representations
that scale to the length of full videos. Integrated models
have high computational demands limiting inference to a
handful of frames. These models generally infer over parts
of a video and lack the scope to capture distant temporal
relationships. Interleaved methods are less demanding but
use frame-skipping to constrain the duration of a video
which require expensive ensembles to find the best temporal
stride at which to sample frames. Separate models are most
likely to perform frame-by-frame analysis without an en-
semble. However, CNN-based models require unreasonably
deep architectures to develop a representation that spans
the duration of a full video. Also RNN-based approaches
generate temporal features by a sequential aggregation of
frames demanding that their temporal representation consider
every frame between related spatial features [42], [19].

III. D-ITR-L: LEARNING FROM TEMPORAL FEATURES

Deep Interval Temporal Relationship Learner (D-ITR-L) is
a pipeline (Fig. 2) that leverages the spatial features identified
by a CNN backbone model to develop temporal features (in
the format of an ITR graph, a novel graphical representation
of connectivity among events which will be discussed in
Section III-D) which are used as the basis for training a GCN
for state estimation. The backbone and graphical inference
methods of D-ITR-L are user-defined and interchangable
with contemporary alternatives. Our novel contribution is
the extraction of temporal features from this data and its
presentation (as an ITR graph) and the benefits achieved by
this approach.

A. Spatial Feature Extraction

The first step in the D-ITR-L pipeline is identifying a set
of informative spatial features from which to build complex
temporal relationships. We obtain these spatial features from



a pre-trained, user-selected CNN backbone. We assume that
the CNN backbone has been fine-tuned to recognize spatial
features present in the dataset that D-ITR-L is expected to
operate upon. The method used to prepare backbone CNN
models in this work is discussed in Section IV-B.2.

B. Formatting Interval Algebra Descriptors

By leveraging the spatial features extracted from a video
we can determine when a specific feature is expressed in
time. This is accomplished through a novel data structure
we term the Interval Algebra Descriptor (IAD). The output
of a CNN backbone when operating on video data is a four-
dimensional tensor (F×T×H×W ) that captures the relative
expression of the learned features in the space (height (H)
and width (W )) and time (T ) of a video. This information is
used to generate our two-dimensional representation (F×T ),
the IAD, by collapsing the spatial dimensions of the tensor
using the maximum operation. Fig. 3a shows an example
IAD developed from a video lasting 195 frames.

Expression of features in an IAD is currently continuous.
To explicitly determine when a spatial feature is being
expressed or not we apply a threshold to each feature
in the IAD (Φf ), with values above the Φf indicating
moments when a feature is actively expressed. The value
of Φf is selected for each feature (f ∈ F ) in the IAD.
We use the mean value of that feature’s expression across
the entire dataset (D) as the criteria for this threshold
(Φf = 1

|D||T |
∑

d∈D

∑
t∈T IADd,t,f ). This requires a single

pass over the training dataset to identify this value and a
subsequent pass to threshold the data. We investigated more
complex threshold values by varying the mean according to
the standard deviation of the feature expression, but none
were as effective as the one described. Alternative threshold
values exist and identifying if a better value exists is a
potential future research direction.

C. Event Detection

From the IAD we can perform event detection to deter-
mine the explicit start and stop times when a spatial feature
is actively expressed. We define each event (the regions
above Φf ) with a four-tuple < ts, te, fi, fmx > denoting
the timestamps at which the event started (ts) and ended
(te), and a description of the content of the event using the
feature label (fi) and the maximum expression of that feature
across the event (fmx). Fig. 3b depicts the events present in
the IAD shown in Fig. 3a. The intensity of the shaded regions
matches the value of fmx.

D. Interval Temporal Relationship Identification

The events identified in Fig. 3b are the basis for recogniz-
ing the presence of ITRs among the events in the input video.
To understand this process, Fig. 4a shows four example
events identified from a thresholded IAD of a video. We
investigate only forward ITRs (listed in Fig. 1) to avoid
redundant calculations. We adopted the approach proposed
in our earlier work [3] for rapidly identifying forward ITRs:
sorting the events in ascending order of ts and te, and then

(a) A raw IAD

(b) Events expressed in the IAD

Fig. 3: Event detection using IAD. The raw IAD (a) contains
32 features expressed over 195 frames. Black intensity de-
notes greater feature expression. The thresholded version of
the same IAD (b) explicitly defines when and to what degree
events are expressed. We show zoomed regions of each IAD
for clarity (in red).

(a) IAD Example (b) ITR List (c) ITR Graph

Fig. 4: Transformation from IAD (a) to a list of ITRs (b) to
an ITR Graph (c). ITR denotation matches Fig. 1.

iterating through the events in a pairwise manner to find
the ITR that relates each pair of events. Fig. 4b provides a
demonstration of this, where we have related event 1 to event
2 by an “overlaps” ITR, event 1 and event 3 by a “meets”
ITR, so on and so forth. This list of ITRs is subsequently
assembled into an ITR graph. Events become the nodes
(labelled with fi, and weighted by fmx) and the ITRs become
the edges. Fig. 4c depicts an ITR graph. The ITR graph is
the collection of all the temporal features in an input video.

E. Learning From Temporal Features

We use a GCN to perform inference using the ITR graph.
GCNs have been used to model unprincipled spatial [40]
and action relationships [37] in earlier works. ITRs are
a principled logic and their use as input to a GCN is a
novel attempt. The relational GCN (R-GCN) described in
[26] learns the discriminatory relations of a graph whose
edge-labels are relationships. This offers a natural integration
of our data. Convolutions in a GCN inference extend a
representation from a node along edges to neighboring nodes.
A sufficiently deep GCN can create a network of ITRs
that describe complex dependencies among several temporal
features. In the context of Fig. 4c, the combined ITRs that
connect events 1, 2, and 3 might be discriminatory compared
to other relationships in the graph. The output of a GCN is
a vector of values that represent the contents of the video
(logits). These logits can be used in concert with any deep
learning-based video inference application. In this work they
are used for activity recognition (using a softmax layer) and
state estimation when learning the policy of sequential tasks



Fig. 5: The D-ITR-L policy learning pipeline.

from visual demonstrations.
Our policy learning architecture operates as a pipeline

(Fig. 5). A video-based observation of arbitrary duration
taken at time (ot) is fed as input into D-ITR-L to generate
an I length vector of logits (oit where i ∈ I). The length
of I is user-defined and should be large enough to capture
all of the potential observation states needed to define the
policy. These logits are combined with logits generated by
observations in previous time steps and a one hot encoding
of prior actions (ajt ; of length J , where j ∈ J). The length of
J is defined by the number of actions in the task. Zeros are
used to represent the action to be inferred (at). The resulting
matrix is an estimation of the state (S) and is fed sequentially
into an LSTM layer. The LSTM generates values for each
of the policy’s actions and the action with the highest value
is performed in the subsequent time step (at).

IV. EXPERIMENTS

We establish that D-ITR-L is a highly effective method
for capturing and inferring the temporal features present in
video through policy learning and activity recognition tasks.

A. Datasets

The strength of D-ITR-L at learning temporal features
is best demonstrated through tasks that capture variations
in duration and video-scale features. Existing benchmark
datasets fail to investigate these concerns [2]. To that end,
we designed a dataset and re-purpose two other benchmark
video datasets to evaluate D-ITR-L. All videos within these
datasets are taken at 30fps and down sampled to 10fps.

1) Block Stacking Task: In this task, a human moves
colored blocks between two opaque containers while fol-
lowing any of these rules at each step: move no blocks (n);
move one red (r), blue(b), or green(g) block; move a blue
block followed by a green block (bg) or vice versa (gb);
or move two or three red blocks (rr and rrr respectively).
These last two are examples of video-scale features. The use
of opaque containers focuses learning on temporal features,
preventing a single frame of the video from fully defining the
observation. The goal of the experiment is for a robot to stack
colored blocks in an order matching the pattern demonstrated

Fig. 6: The Block Stacking Experiment. Frames of observa-
tions where a colored block are visible are highlighted with
the block color. Frames are sampled uniformly from source
video and tagged with the frame number.

by the human (Fig. 6). The robot selects one action during
each phase of the interaction to either stack a single colored
block (R, B, or G) or pass (N ).

Expert demonstrations are collected with a single human
demonstrator and a tele-operated Sawyer robot. We recorded
ten RGB videos in which the human moved blocks according
to the eight observations for a total of 80 videos. We set three
videos from each observation aside for evaluation and used
the rest for training. To investigate the influence of variations
in duration, we compared two variants of the dataset: one
where the timing of the movement of blocks was fixed
according to a metronome and another where movements
were executed variably according to the whims of the user.

For efficiency, multi-step demonstrations were generated
in a procedural manner by shuffling one example from each
of the eight observations together and choosing the appro-
priate actions given the observation sequence. Observations
depicting no action (n) are used to pad the sequence of
observations to match the length of the sequence of actions.
A total of 100 traces were generated of which 90 were used
for training and the remainder were used for evaluation.
Trajectory learning is beyond the scope of this work and
it is assumed that the robot knows where the blocks are
located and how to manipulate the blocks. The focus of this
experiment is to generate a strong representation of the state
using the latent temporal information present in the video
observations.

2) Activity Recognition: We investigate two activity
recognition datasets re-purposed from other computer vision
applications namely, action prediction and multiple person
tracking. The first is a furniture construction dataset com-
posed of 101 videos capturing actors as they perform the 6
steps to construct and deconstruct a table (Fig. 7(left)) [14],
[30]. The second is a recipe following dataset consisting of
53 videos of chefs preparing meals according to 6 possible
recipes [20] (each composed from 9 composite actions (Fig.
7(right))). We develop two variations of this second dataset:
one focuses on the composite actions and the other on
the recipes. Videos among all three datasets are subject to
variations in duration and capture video-scale features.



Fig. 7: The Furniture Construction Dataset (left) and the component actions from the Recipe Following Dataset (right).

B. Training

D-ITR-L is compared against other CNN-based temporal
inference models.

1) Pre-processing: Videos in these experiments are re-
sized to be compliant with the backbone models they are
fed into. Videos from the block stacking and recipe following
datasets were also subjected to Gaussian blur and background
subtraction [33] to emphasize spatial features that move.
These steps were not applied to the furniture construction
dataset which possessed many subtle movements (e.g. ‘screw
in’ and ‘screw out’) that could be occluded by these methods.

2) Spatial Feature Extractors: We contrast four CNN-
backbone structures in this work: Two image inference
(VGG-16 (abbr. VGG) [28] and Wide ResNet (abbr. WRN)
[39]) and two video inference architectures (I3D [4] and
TSM [21]). We fine-tune each backbone network to recog-
nize spatial features present in the datasets. Unfortunately,
the sparse expression of spatial features in these videos
impedes learning. We address this concern by applying a max
pool operation over the temporal dimension of the model,
thereby reducing sparsity and focusing exclusively on spatial
feature presence. Once trained, the weights of the backbone
model are fixed and the pooling layer is discarded allowing
for inference over the temporal dimension. For consistency
all architectures in this work (fine-tuning and inference) are
trained over 50 epochs with an Adam optimizer utilizing a
learning rate of 1e− 3 and a cross entropy loss.

The ITR Graph possess an exponential number of edges
for each spatial feature being investigated. When using D-
ITR-L we constrain the number of features output by a
CNN backbone by introducing a bottleneck (BN) between
the CNN-backbone and the temporal inference layer. The
number of features we reduce to is user-defined. For each
dataset and model we performed a grid-search to find the
best BN size for each model from values of 8, 16, 32, and 64.
BN values varied for the block stacking task and are depicted
in Table II. On all other datasets and backbone models the
best performing BN value was 64.

3) Temporal Inference Architectures: D-ITR-L is com-
pared against three other separated approaches that infer
temporal features from extracted spatial features: linear
inference (which conducts only spatial inference), LSTM (a
RNN), and TCN (a CNN). LSTM and TCN are the most
classical representations of their respective architectures.
These temporal inference architectures each use the same
set of spatial features extracted from the CNN-backbones.

V. RESULTS

The results show that D-ITR-L can learn video-scale
temporal features in a duration invariant fashion and leverage
them for policy learning and activity recognition.

A. Block Stacking

We compare D-ITR-L against baseline temporal inference
models when overcoming aforementioned challenges.

1) Variations in Duration: Variations in duration are
present in all observations and we measure the accuracy
(as a percentage of correct action predictions) across the
entire dataset as opposed to a specific observation (Table
II). When trained on the dataset with fixed timing, D-ITR-
L performed comparably with the LSTM and TCN models.
This is expected given the duration-specific nature of these
baseline architectures and the dataset. Among the CNN
backbones, the video-based architectures (I3D and TSM)
performed worse than the image-based architectures (WRN
and VGG). We attribute this to the increased challenge
present in generalizing spatio-temporal features to video
when compared to just spatial features.

D-ITR-L dominated all other approaches when applied on
the variably timed data. We attribute this to D-ITR-L’s use
of duration invariant feature representation. Curiously, the
D-ITR-L-driven policy learner generally performed better on
variably timed data than it would with the easier to model
fixed time data. Movement of blocks in the fixed time dataset
was uniformly scheduled over several seconds and expression
of features was not as easily delineated from these videos as
it was in the variably timed data where block movements
was often delayed.

2) Video-Scale Features: Representation of video-scale
features is assessed by how well a model can distinguish
between the bg and gb observations (ordering) and the r,
rr, and rrr observations (cycles). This experiment was con-
ducted using the variably timed version of the block stacking
dataset and the VGG CNN-backbone (Table II). Variably
timed movements were collected with fewer constraints and
better represent real world data. VGG performed the best of
the backbone models investigated on this dataset. Accuracy
is a measure of the model’s ability to correctly select the
next three actions following an observation (Table IV). Three
examples were used for each observation.

The linear model was able to recognize the presence of
spatial features, but could not learn the temporal content
of the observation. This model would default to a single
pattern of actions for all observations (i.e. moving the green



Block Stacking: Fixed Timing Block Stacking: Variable Timing
CNN BN Linear LSTM TCN D-ITR-L BN Linear LSTM TCN D-ITR-L
I3D 16 53.3% 53.3% 46.7% 60.0% 8 38.0% 38.0% 30.0% 40.0%

TSM 16 46.6% 70.0% 90.0% 90.0% 16 40.0% 82.0% 73.3% 94.0%
WRN 16 46.6% 76.6% 90.0% 90.0% 16 40.0% 65.8% 90.0% 96.7%
VGG 32 66.6% 90.0% 86.6% 90.0% 32 56.0% 72.0% 73.3% 98.0%

TABLE II: Accuracy of Policy Learning Approaches Trained on the Block Stacking Datasets

Furniture Construction Recipe Following: Component Actions Recipe Following: Full Recipe
CNN Linear LSTM TCN D-ITR-L Linear LSTM TCN D-ITR-L Linear LSTM TCN D-ITR-L
I3D 53.20% 56.49% 56.49% 58.87% 61.67% 67.07% 70.64% 73.05% 10.53% 10.53% 21.05% 36.84%

TSM 24.86% 27.06% 25.59% 48.63% 57.49% 67.07% 53.29% 72.46% 15.79% 15.79% 15.79% 26.32%
WRN 17.92% 21.94% 21.39% 42.60% 29.98% 52.10% 61.67% 70.06% 15.79% 15.79% 15.79% 21.05%
VGG 43.69% 50.63% 51.00% 65.27% 58.68% 56.28% 59.28% 66.46% 15.79% 21.05% 21.05% 31.58%

TABLE III: Accuracy on the Recipe Following Dataset

Obs. Linear LSTM TCN D-ITR-L
gb 100.0% 100.0% 66.7% 100.0%
bg 0.0% 100.0% 66.7% 100.0%
r 0.0% 0.0% 100.0% 100.0%
rr 0.0% 0.0% 33.3% 66.7%
rrr 100.0% 100.0% 33.3% 100.0%

TABLE IV: Accuracy of State Estimators given Specific
Observations from the Block Stacking Task

block followed by the blue block for both bg and gb).
The LSTM architecture learned the difference between the
ordering of blocks, but could not distinguish between the
different cyclical actions. Identification of temporal patterns
is easier to accomplish when using dissimilar spatial features
than it is with similar features, which is the case with the
cyclical activities. The TCN model was able to capture both
video-scale features, but did so poorly. TCN is duration-
specific and matching a representation to the data is chal-
lenging given the possible variations in the duration of spatial
events. D-ITR-L was able to distinguish both video-scale
features effectively. The singular exception was an instance
of rr incorrectly identified as rrr. The CNN-backbone was
inconsistent for this observation and the expression of the
red block was noisy. This discrepancy cascaded through the
D-ITR-L pipeline resulting in inaccurate event detection and
subsequently incorrect temporal feature identification. The
quality of our temporal features are fundamentally tied to
the quality of the spatial features present in the backbone.

B. Furniture Construction

D-ITR-L outperformed all other temporal inference mech-
anisms on the furniture construction dataset (Table III)
regardless of CNN-backbones. The linear model performed
the worst in all cases. This is expected given that the linear
model lacks an ability to represent temporal information in an
informed way. TCN and LSTM performed similarly to each
other. These architectures are duration specific and ill-suited
to modelling video-scale features, two properties expressed
in the furniture construction dataset. In all cases D-ITR-
L showed an improvement over the baseline models, with
margins of between 2.38% in I3D and 21.57% in TSM. The
highest accuracy achieved on the dataset was 65.27% when
D-ITR-L leveraged the spatial features of VGG.

C. Recipe Following

The recipe following dataset was evaluated at two scales:
the component actions that compose the recipes and the
recipes themselves (Table III). Beginning with the compo-
nent actions, our results generally aligned with those in Sec-
tions V-A and V-B: the linear model in most cases performed
the worst, the TCN and LSTM approaches were comparable,
and D-ITR-L shows improvement over the nearest baseline
video architecture regardless of the type of backbone model
used (between 2.4% and 8.39% using I3D and WRN).

When comparing the accuracy given the full recipes,
D-ITR-L again outperformed earlier models. However, the
accuracy of these models is more muted in comparison to
the results of earlier experiments. Many of the baseline
models in this dataset failed to generalize to the data and
achieved a random accuracy (15.79%) or over fit to a
single class label that was under-represented in the validation
dataset (10.53%). In contrast, D-ITR-L creates a more robust
representation of the data and is able to recognize some of
the demonstrated recipes, specifically those that possessed
the ‘sprinkle’ component action. This action can be distin-
guished from the ‘transfer’ action by a cyclical video-scale
feature: the number of times the person picks up and scatters
ingredients. D-ITR-L’s ability to effectively capture video-
scale features provided it the leverage to recognize the more
complex videos where other models simply failed to learn.

VI. CONCLUSIONS
Adequate representation of temporal features is a useful

first step towards teaching robots to autonomously perform
sequential tasks. Regrettably, the current state-of-the-art is
inadequate when it comes to modelling this data. We de-
sire a holistic architecture capable of capturing video-scale
temporal features in a duration invariant manner. D-ITR-L
addresses this niche by building temporal features directly
on top of the spatial features learned by popular CNN-
backbone models. We have demonstrated, through several
experiments, that the temporal features extracted by D-ITR-
L (when learned by a GCN) are a better alternative to those
of contemporary deep learning models.
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