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Abstract— This paper presents a framework to learn the
reward function underlying high-level sequential tasks from
demonstrations. The purpose of reward learning, in the context
of learning from demonstration (LfD), is to generate poli-
cies that mimic the demonstrator’s policies, thereby enabling
imitation learning. We focus on a human-robot interaction
(HRI) domain where the goal is to learn and model structured
interactions between a human and a robot. Such interactions
can be modeled as a partially observable Markov decision
process (POMDP) where the partial observability is caused by
uncertainties associated with the ways humans respond to dif-
ferent stimuli. The key challenge in finding a good policy in such
a POMDP is determining the reward function that was observed
by the demonstrator. Existing inverse reinforcement learning
(IRL) methods for POMDPs are computationally very expensive
and the problem is not well understood. In comparison, IRL
algorithms for Markov decision process (MDP) are well defined
and computationally efficient. We propose an approach of
reward function learning for high-level sequential tasks from
human demonstrations where the core idea is to reduce the
underlying POMDP to an MDP and apply any efficient MDP-
IRL algorithm. Our extensive experiments suggest that the
reward function learned this way generates POMDP policies
that mimic the policies of the demonstrator well.

I. INTRODUCTION

This paper focuses on learning the dynamics of interac-
tions between humans from observations. Such interactions
take place, for example, in educational settings in which a
teacher and a student goes through a sequence of steps with
the goal of teaching a skill to the student [22]. Growing
body of evidence gathered through numerous Wizard-of-
Oz studies in the past decade shows that robots have the
capacity to take the role of a teacher in structured educational
intervention [27], [13], [18]. Special education teacher short-
age [12] and improved learning outcomes through robot-
mediated intervention (RMI) [14] motivate the need of
autonomy for real-world deployment of robots in educational
settings [34], [37]. Our previous works pioneered the use
of learning from demonstrations (LfD) for teaching robots
the steps of arbitrary educational interventions from domain
experts’ demonstrations [9], [10], [11]. This paper addresses
a critical problem encountered by any such high-level LfD
framework whose focus is to generate an abstract model of
the goal-directed behaviors of a human demonstrator: how do
we define a function that will estimate the reward of being
in a particular state of a sequential task in terms of highly-
uncertain perceptual inputs?
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POMDPs are especially suitable for modeling human
interactions because of the inherent uncertainty in human
behavior. The goal of LfD of the task, therefore, becomes
finding a policy in that POMDP which mimics the demon-
strator’s policy. The key requirement for policy learning is to
identify a reward function. In this case, the reward function
is the strategy observed by the interacting humans to take
the next action as the interaction unfold with time. Even if
the interaction is structured in nature, the cues and responses
generated by humans are highly uncertain and handcrafting a
reward function in terms of these cues is extremely difficult,
if not impossible. IRL provides a natural solution to this
problem where the goal is to derive the reward function
underlying a set of demonstrations [41]. Unfortunately, IRL
for POMDP is a less-explored domain and existing al-
gorithms are highly computationally expensive. However,
IRL algorithms for learning reward functions in MDPs
are sophisticated and computationally efficient. This paper
shows experimentally that learning from demonstrations in
POMDP domains can be achieved effectively by reducing
the POMDPs to MDPs. The learned reward functions can be
used to generate POMDP policies that accurately mimic the
policies of the demonstrator.

II. BACKGROUND

Learning from demonstrations (LfD) or imitation learning
is a popular robot learning paradigm for teaching robots
new skills through human guidance [3], [7]. The key com-
ponent of an LfD framework is learning the expert policy
of the demonstrator. One approach for policy learning in an
LfD setting is to directly mimic the exact behavior of the
demonstrator without analyzing the underlying task structure
and/or context. This approach is suitable for low-level LfD
where the purpose typically is to learn a demonstrated motion
trajectory [17]. Accordingly, reinforcement learning (RL)-
based direct policy learning has been used in many low-
level LfD tasks where the reward function was hand-crafted
or directly extracted from the perceptual data [3], [19], [30],
[20].

In the case of high-level LfD, where the goal is to
generate an abstract model of the demonstrated task, direct
policy learning becomes difficult due to indirect mapping
between the perception and actions [7]. High-level LfD
algorithms, therefore, often rely on the assumption that the
best representation of an expert’s behavior is the reward
function, not the policy [32], [29]. Accordingly, the goal
is to learn the reward function using IRL and then use
it to compute the optimal the policy. IRL-based LfD has



been used in many low- and high-level LfD tasks where
handcrafting of a reward function is tedious due to a high
dimensional state space, e.g. continuous control of helicopter
[1], parking lot navigation [2], navigating a quadruped robot
across different terrains [39], human navigation behavior
[28], routing preferences of drivers [40], modeling goal-
directed trajectories of pedestrians [41] and user simulation
in spoken dialog management systems [6].

The recent success of deep convolutional neural networks
(CNNs) in approximating complex relationships among envi-
ronmental features and an agent’s actions [23], [33], [16] has
triggered the trend of end-to-end learning of reward functions
[31], [35]. In general, learning the reward function relies
on the assumption that the environmental features determine
the reward structure. This is even more true for CNN-based
learning of reward functions which works better when the
environment undergoes clearly perceivable changes caused
by an agent’s actions. Take, for example, the reward function
for the task of opening of a door and pouring to a glass
from an expert’s demonstration using a CNN [31]. Here the
reward starts with zero and rise proportionately as the glass
gets filled up or the door opens up gradually. In contrast, the
perception of human-robot interactions (such as educational
intervention) is subject to uncertainties which make it diffi-
cult to establish a clear connection between observed features
and an agent’s actions. Since such structured interactions can
be modeled as POMDPs, it opens up the possibility of using
model-based IRL algorithms to extract the underlying reward
function.

The primary contribution of this paper is to show, through
a series of real-world experiments, how POMDPs repre-
senting human-robot structured interactions can be reduced
to MDPs. Then, IRL algorithms for MDPs can be used
to approximate the reward function that generates highly
accurate POMDP policies. The proposed framework learns
two different robot-mediated educational interventions solely
from raw observations. The proposed approach is beneficial
to learning many other HRI problems from demonstrations
that can be represented as POMDPs.

III. PRELIMINARIES

A. MDPs and POMDPs

An MDP is a tuple 〈S,A, T, γ,R〉: where S is the finite set
of states; A is the finite set of actions; T : S×A×S → [0, 1]
is the state transition function where T (s, a, s′) represents
the probability of moving to state s′ from state s by taking
action a; R : S × A → R is the reward function where
R(s, a) represents the immediate reward generated by taking
an action a in a state s; γ ∈ [0, 1) is the discount factor.

The solution to an MDP is a stationary deterministic
policy π : S → A [26]. A policy π is optimal if π(s) ∈
argmaxa∈AQ

?(s, a) for each s ∈ S where Q? is defined by
the following Bellman optimality condition:

Q?(s, a) = R(s, a) + γ
∑
s′∈S

T (s, a, s′)V ?(s′) .

The optimal value function V ? : S → R must satisfy
V ?(s) = maxa∈AQ

?(s, a). We use Qπ and V π to denote
the state-action and state value functions for the policy π.

A partially observable MDP (POMDP) extends an MDP
by relaxing the requirement that the present state is
perfectly observable. A POMDP is defined as a tuple
〈S,A,Z, T̄ , O, γ,R〉: where S,A, T̄ , R and γ are defined
identically as in MDPs. In addition, Z is a finite set of obser-
vations and O : S×A×O → [0, 1] is the observation function
where O(s, a, o) denotes the probability of observing an
observation o after executing action a and transitioning to
state s.

It is well-known that any POMDP can be reduced to an
equivalent belief MDP with states S̄, actions A, transition
probabilities T̄ , and rewards R̄ [25]. Note that the actions in
the belief MDP are the same as in the POMDP. The states
S̄ = ∆S of the belief MDP belong in the probability simplex
over S. We generally use b ∈ S̄ to denote a belief and b(s)
to represent the probability that corresponds to a state s. The
transition probabilities T̄ in the belief MDP are defined as
follows:

T̄ (b, a, b′) =
∑
o∈O

1b′=b′o

∑
s,s′∈S

O(s′, a, o)T̄ (s, a, s′)b(s)

 ,

where b′o is the belief state that follows b after an action a
and an observation o and defined as:

b′o(s
′) = η O(s′, a, o)

∑
s∈S

T̄ (s, a, s′)b(s) .

Here, η is a normalization constant and 1b· represents and
indicator function. The reward R̄(s, a) is defined as:

R̄(b, a) =
∑
s∈S

b(s)R(s, a) .

B. Inverse RL for MDPs and POMDPs

The IRL problem in the MDP context was first presented
in [24] and countless methods have improved on it since;
see, for example, [38], [40], [21] and references therein.
The goal of IRL is to learn to emulate a policy simply by
observing the execution by an expert. When the dynamics
of the environment are known, it is possible to achieve
impressive generalization by using the demonstration to learn
the apparent rewards that drive the expert’s behavior. Because
we focus on relatively small problems, simple IRL methods
are sufficient. We review the basic principles of IRL for
MDPs and POMDPs in this section.

The necessary and sufficient condition for the reward
function R of an MDP to guarantee the optimality of a policy
π is [24], [32]:∑

s∈S

(
Qπ(s, a1)− max

a∈A\a1
Qπ(s, a)

)
One of the simplest IRL methods proceeds as follows [24].
Given the expert’s policy π̂ we seek to maximize the sum
of the difference between the quality of the optimal action
and the quality of the second best action the reward function



is found by solving the optimization problem using linear
programming:

max
R:S→R

N∑
s=1

min
a∈A\{π̂(s)}

(Pπ̃(s)− Pa(s))vπ̂ − λ‖R‖1

s.t. (Pπ̂ − Pπ)vπ̂ ≥ 0 ∀π ∈ Π

|Ri]| ≤ Rmax i = 1, ....., N

where π̂ is the policy that we want to learn, Pπ is the transi-
tion probability matrix for the policy π, and λ is an adjustable
weight for the penalty of having too many non-zero entries
in the reward function R and vπ̃ = (I − γPπ̂)−1R. Note
that this simplified formulation assumes that the rewards
are independent of actions and can be easily generalized to
standard MDP settings [24].

The literature on IRL algorithms for POMDP is limited.
We are only aware of one algorithm, which is based on finite-
state controllers [8]. This algorithm converts the POMDP to
a cross product MDP and then extends IRL methods for
MDPs, such as [24], in this formulation. Our experimental
results suggest that this approach is not viable when learning
to mimic human interactions.

IV. THE PROBLEM

We focus on a real use-case of robot-mediated educational
intervention where the robot will learn to take the role of a
teacher to teach a child a specific skill [5]. We are particu-
larly interested in Applied Behavior Analysis (ABA)-based
intervention [15]. ABA is well known for its rigid structure
and unparalleled success in teaching basic skills to children
with developmental delays. In any ABA-based intervention,
the interaction between two agents (a robot teacher and a
student) evolve in the following way: Command → Re-
sponse → Prompt (if required) → Reward → Abort. Here,
the Discriminative stimuli, Prompt, and Reward are actions
performed by the robot while the Response is executed
by the child. The Prompt can be delivered multiple times.
Such interventions are typically repeated multiple times per
day for several days before a child with a developmental
delay can master the target skill. This triggers the need for
autonomy in the robot. For a particular intervention, Wide
inter- and intra-child variations may exist in the ways the
Response is executed, making hand-coding a tedious task.
We focus on autonomous learning of two ABA-interventions
that are frequently used by therapists to teach children with
autism: social greetings and object-naming. In case of the
social greetings intervention (Fig. 1(a)), the goal is to teach,
following the ABA principles, how to respond to a greeting
in a socially acceptable manner [4]. The goal of the object-
naming intervention (Fig. 1(b)) is to teach to respond to
query and improve the vocabulary of a child. The detailed
steps of these two interventions are reported in Table I.

From a machine learning perspective, our goal is to
learn the complete structure (perception-action pairs) of
any ABA-based interventions entirely from observations so
that the robot can deliver such interventions autonomously.
Our previous work used a POMDP to model the social

TABLE I
STEPS OF ROBOT-MEDIATED ABA-BASED EDUCATIONAL

INTERVENTIONS

Step Controller Social Greeting Object Naming
1 Therapist

(Robot)
Wave and say, “Hello X” Point to the object and

say, “what is this”
2 User (x) Compliant: Compliant:

correct response correct response
Non compliant: No or Non compliant: No or
incorrect response incorrect response

3 Therapist
(Robot)

- If compliant will say
“Great job”

- If compliant will say
“Great job”

then goto step 4 then goto step 4
-If non compliant will
give a prompt: (max 1
time) “Please say hello”
then goto step 2

- If non compliant will
give a prompt (max 4
times): “This is (object
name)” then goto step 2

4 Therapist
(Robot)

End the session saying
“Good bye”

End the session saying
“Good bye”

greetings intervention and performed policy selection using
hand-crafted reward function and hand-picked environmen-
tal features [11]. Hand-crafted reward function resulted in
erroneous policy selection. Failure in the detection of hand-
picked features, a well-known problem with visual percep-
tion, further deteriorated the policy selection performance.
The specific goal of this paper is to learn the reward function
from demonstration data for any ABA-based intervention that
can be modeled as a POMDP. We also make the perception
robust through the use of a convolutional neural network
(CNN).

V. A POMDP FOR ABA-BASED EDUCATIONAL
INTERVENTION

A. Model Description

We designed a POMDP to model any ABA-style educa-
tional intervention.
• States S: There are two states that a child can be in:
compliant and non-compliant. The initial state s0 ∈ S is
selected randomly.
• Actions A: There are four actions that a robot can take:
Command, Prompt, Reward, and Abort. The Reward and
Abort are terminal actions that ends the intervention.
• Observations Z: A predefined set of speech and visual cues
that are associated with the two states of a child.
• Transition function T̄ and observation function O: Both
functions emulates the frequency and interactions occurred
in the demonstration set.
• Reward function R: The goal is to learn the reward
function. For comparison purpose we hand-crafted different
reward functions that, in general, penalize the robot for
all states-actions except for performing the correct terminal
action at the appropriate state. Quickly identifying the true
state is encouraged through the use of a discount factor
γ = 0.9 and small penalties when performing non-terminal
actions.

B. Training

1) Demonstration set: We conducted two IRB-approved
user studies to create demonstration sets for training the
POMDP model, one for the social greeting intervention and



the other for the object naming intervention (Fig. 3). During

(a) (b)

Fig. 1. ABA-based robot-mediated intervention scenario. The goal is to
learn the entire interaction from observations for autonomous delivery by a
robot

the user studies, we restricted the maximum number of
prompt before executing a terminal action to one for the
social greeting intervention and to five for the object naming
intervention. The robot was tele-operated during these two
studies.

Six college students (4 male, 2 female) without autism
participated in the study. Each participant completed a min-
imum of 18 interactions with the teleoperated robot. The
demonstration set consisted of 189 videos for the social
greeting intervention and 165 videos for the object naming
intervention. For the social greeting intervention, 139 videos
were used for training and 50 for validation.

2) Observation processing: Observations for the object
naming intervention include a verbal response of the partici-
pant whe s/he correctly/incorrectly answers the query of the
robot (e.g. by saying ‘a ball’ or ‘this is a ball’ in response to
the robot’s question ‘what is this?’). We used the on-board
speech recognition module of the NAO robot to process the
only observation of the object naming intervention.

Observations for the social greeting intervention include
presence or absence of any combination of the following
cues generated by the participant: gaze toward the robot as
a contingent response to the robot’s action, verbal response
to the robot’s greeting (e.g. ‘hi’, ‘hello’), and hand gesture
directed to the robot. We used a CNN-based framework (Fig
2) to identify the presences of any or more of these audio-
visual cues. There are two separate CNNs in this framework:
the first one, FCNN , is trained to detect gaze and hand
gesture and the second one, ACNN , is trained to process
verbal response. As shown in Fig. 2, both FCNN and ACNN
have three convolution layers, one long-short term memory
(LSTM) layer and one fully connected layer.

The images in the demonstration set are captured through
the robot’s on-board camera at 15 fps and are 640× 480 in
size. They are pre-processed using standard image processing
techniques in such a way that the input images to the FCNN
only feature the face and some of the surrounding areas
of the participants. Thus, the ACNN is trained with gray-
scale 128 × 8 images. The FCNN is trained to infer three
output classes: Gesture detected, Gaze detected, and Nothing
detected. During autonomous execution, the inference made
by the FCNN for the incoming video stream is used as an
observation (Z) for the POMDP model.

The audio data are captured using the robot’s on-board
microphone. All audio data is preprocessed using a com-
bination of spectral subtraction and FIR filters in order to

Fig. 2. The CNN-based framework for observation processing. F: filter
dimension, S: Stride, N: the number of filter

TABLE II
HAND-CRAFTED REWARD FUNCTION

Action / State Model 1 Model 2 Model 3
Command / Compliant 0 -1 -1

Command / non-compliant 0 -1 -1
Prompt / Compliant 0 0 -2

Prompt / non-compliant 0 0 -2
Reward / Compliant 1 1 10

Reward / non-compliant 0 -1 -60
Abort / Compliant 0 -1 -30

Abort / non-compliant 1 1 10
Accuracy 75% 85% 91%

reduce the audio signal’s background noise. The smoothed
data is subsequently converted to a Mel-Spectrogram in order
to provide a two-dimensional representation of the data [36].
Finally, the resulting Mel-Spectrograms are split into an array
of frames (A) equal in length to the number of image frames
that are used as the input to the FCNN . Each of the frames in
A has dimensions 128× 8 and contains part of the previous
frame in its first two columns and part of the next frame in
its last three columns, to obtain a better view of the entire
audio signal and include relevant patterns. The ACNN is
trained with the Mel-Spectrograms A and infer three output
classes: Robot speaks, Human speaks, and Nothing detected.
The Human speaks class corresponds to a positive response
generated by the participant. During autonomous execution,
the inference made by the ACNN for the incoming audio
stream is used as observation (Z) for the POMDP model.

We trained both networks using 140 videos from our
training dataset and evaluated the model’s accuracy on a set
of 50 videos. The accuracy was 98.4% for the ACNN and
92.6% for the FCNN .

C. The Role of Reward Function:

To investigate the role of reward function on the learned
policy, we hand-designed three reward models, as shown in
Table II. The first reward model, Model 1, is a commonly
used reward strategy in RL literature where the reward is 0
everywhere except at the terminal states where it is 1. The
second model imposes some penalties for taking the incorrect
action and is positive for the prompt action. The third model
imposes even more penalties for taking incorrect action. We
then train the POMDP with the training set using each of
these three reward models.

Fig. 3 shows the α−vectors generated from the three
reward models. Any small change in reward leads to signif-
icant change in α−vectors and hence unexpected policies.
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Fig. 3. α−vectors generated using different reward models (a) P(compliant state) of model 1 (b) P(compliant state) of model 2 and (c) P(compliant state)
of model 3

Fig. 4. The proposed model for reward learning in a POMDP

We evaluated the learned policies using the evaluation set.
The accuracy is calculated as the number of times a learned
policy mimics the demonstrator’s policy, as observed during
the demonstration. The α−vectors corresponding to the first
model represent only the reward and abort actions (fig 3(a))
while ignoring the prompt action. These conservative policy,
therefore, generates very low accuracy (75%, Table II).
Incurring more penalties for incorrect actions increased the
accuracy to 85% (the second model) and 91% (the third
model). All results were generated with ideal observation
detection (i.e. all CNNs and speech recognition worked
without any error).

These results shows the need of learning the reward
function in order to mimic the demonstrator’s policy. In many
robotic application domains, including robot-mediated edu-
cational intervention, the demonstrator’s policy is considered
as optimal and a robot is required to exactly mimic that.
Reward learning from demonstration data, therefore, is the
most appropriate choice.

VI. PROPOSED FRAMEWORK FOR REWARD LEARNING IN
POMDP

Fig. 4 shows our proposed approach to reward learning
for a POMDP representing a high-level task. Here, the core
idea is to reduce the POMDP to an MDP and extract the
reward function using an efficient IRL algorithm for MDPs.
Through a series of experiments, we show that the reward
function extracted this way, when employed in the origi-
nal POMDP, generates policies that accurately mimics the
demonstrators’ policies. POMDP Policies generated using
this proposed framework also outperforms those generated
using the reward function learned through existing POMDP-
IRL algorithms. We investigate two approaches for reducing
a POMDP to an MDP: naive reduction and discretization.
Both are discussed below.

A. Naive Reduction

The main idea of naive reduction is to map each possible
observation to one MDP state, thereby eliminating the uncer-

tainty with state estimation. Also, we assume that our obser-
vation system (described in Section V-B.2) accurately detects
all observations. For example, in the case of social greeting
intervention observations include gaze (G), speech (S), and
hand gesture (H) generated by a child. The presence of any
combination of these three cues in response to a robot action
infers the child to be in a compliant state. An exception
is the case where only gaze is present which is considered
as non-compliant. Accordingly, the naive reduction strategy
generates eight MDP states corresponding to the three cues,
six of which resembles the compliant state of the original
POMDP while two indicate a non-compliant state. Fig. 5
shows the POMDP model of a social greeting intervention
reduced to an MDP model using the naive reduction strategy.
The actions (A), and the transition function (T ) for the
reduced MDP are similar to the original POMDP. Once the

Fig. 5. Naive MDP model: 0 and 1 indicate the presence and absence of
a specific observation, respectively

MDP model is generated, any existing MDP-IRL algorithm
can be used to learn the reward function for this MDP. In
this paper, we present experiments with the seminal IRL
algorithm proposed in [24]. Finally, the reward function is
employed to generate policies from the original POMDP.

B. Discretization

Discretization is a more automated process than naive
reduction where we discretized the POMDP belief state to
a pre-defined number n of belief segments. Each segment
represents one state of an MDP. For example, for n = 5,
we will generate an MDP with 5 states from our original 2-
state POMDP where the states are: b0, b0.25, b0.5, b0.75, and
b1. Here, b0 represents a state where a child is believed to
be 0% compliant and 100% non-compliant, and so on. The
states b0 and b1 are considered to be terminal. An initial state
sstart is also added to start the model. The actions A are the
same as those in the original POMDP. The transition function
(T̂ = P (b′|b, a)) is calculated as follows to emulates the



interactions that occur between different belief states with
completely unbiased state transition where the unused states
are distributed with equal probability:

P (b′′|b, a) =
∑
o′εO

P (o′|a, b) · 1bn∈argminb̃‖b′′−b′‖1

where b′ is the next belief state and b′′ is the next discretized
belief state. The probability P (b′′|b, a) can be computed
readily using Bayes formula, see e.g. [25], as follows:

b(s′) = P (s′|a, o, b) · P (s′|a, b)

P (s′|a, b) =
∑
sεS

P (s′|a, s) · b(s)

P (o′|a, b) =
∑
s′εS

P (o′|s) · P (s′|a, b)

Once we have the MDP model, any MDP-IRL algorithm
can be applied to learn the reward function. We used the
algorithm proposed in [24]. Finally, the generated reward is
mapped to the original POMDP model as follow.

R(s, a) =
∑
sεS

r(a, b) · b(s) ,

where R(s, b) represents the reward function from the belief
MDP model and r(a, b) represents the reward function for
the POMDP model.

VII. EXPERIMENTS AND RESULTS

We validated the proposed approach through experiments
conducted for the two HRI problems discussed in Section IV.
The demonstrated data was used to design and train both
the POMDP and the reduced MDP. The reward function
learned from the MDP was used with the POMDP to
generate policies. To assess the accuracy of these policies we
organized a user study where 4 participants, who were not
a part of the demonstration set, were invited to interact with
the robot in the context of social greeting and object naming
interventions. The robot generated policies online while
analyzing the observation and interacted with the participants
in a completely autonomous manner. The accuracy is defined
as the number of times (in percentage) the robot delivered
the correct action.

We also compared the POMDP policies generated using
the proposed approach with those generated using the Two
existing POMDP-IRL algorithms: dynamic programming up-
date based approach (DP), witness update based approach
(Witness) [8] and the handcrafted reward discussed earlier
in section V-C (Original).

The α-vectors for the POMDPs generated using the reward
functions learned from the MDP following the two methods
(naive reduction and discretization) are shown in Fig. 6.
As a comparison, Fig. 7 shows the α-vectors generated
using the two POMDP-IRL algorithms proposed in [8]. The
common problem with these vectors is that they allow the
reward action only when the belief is extremely high about
compliance (nearly 100%). Accordingly, the robot executes
the prompt action even if a participant responded in a
compliant manner.
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Fig. 6. α-vectors for the POMDPs generated using the proposed approach
(a) MDP generated through naive reduction (b) MDP generated through
discretization
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Fig. 7. α-vectors for the POMDP generated using (a) DP based IRL
approach for POMDP (b) Witness based IRL approach for POMDP

Accuracies of the policies generated using the α-vectors
in Figs. 6 and 7 are listed in Table III for the Social
greeting intervention and in Table IV for the object naming
intervention.

TABLE III
SOCIAL GREETING: ACCURACY OF DIFFERENT REWARD FUNCTIONS

Observation DP Witness Original Discretized Simplified
1 87.5% 87.5% 87.5% 87.5% 100%
2 87.5% 91.6% 95.8% 100% 100%

Accuracy 87.5% 89.6% 91.6% 93.75% 100%

TABLE IV
OBJECT NAMING: ACCURACY OF DIFFERENT REWARD FUNCTIONS

Observation DP Witness Original Discretized Simplified
1 50% 50% 50% 50% 100%
2 100% 75% 100% 100% 100%
3 100% 75% 100% 100% 100%
4 100% 75% 100% 100% 75%
5 50% 50% 75% 75% 75%

Accuracy 80% 65% 85% 85% 90%

VIII. CONCLUSION

In this paper, we presented a framework to learn the
reward function of a POMDP representing high-level se-
quential tasks from demonstrations. The core idea of the
proposed framework is to reduce the POMDP underlying
the seqential task to a MDP and extract the rewrad func-
tion using computationally efficient MDP-IRL algorithms.
Through a series of experiments with two real-world HRI
tasks, we show that the POMDP policies generated using
such reward functions accurately mimic a demonstrator’s
policies. We also demonstrate through experiments that the
POMDP policies generated using our proposed framework
outperforms the policies generated using existing POMDP-
IRL algorithsm. The proposed framework, therfore, offers
a simple yet elegent way to use POMDP models to learn
high-level sequential tasks from demonstations.
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