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Abstract— We present a learning from demonstration (LfD)
framework that uses a deep recurrent Q-network (DRQN)
to learn how to deliver a behavioral intervention (BI) from
demonstrations performed by a human. The trained DRQN
enables a robot to deliver a similar BI in an autonomous
manner. BIs are highly structured procedures wherein chil-
dren with developmental delays/disorders (e.g. autism, ADHD,
etc.) are trained to perform new behaviors and life-skills.
Mounting anecdotal evidence from human-robot interaction
(HRI) research has shown that BI benefits from the use of
robots as a delivery tool. Most of the HRI research on robot-
based intervention relies on tele-operated robots. However, the
need for autonomy has become increasingly evident, especially
when it comes to the real-world deployment of these systems.
The few studies that have used autonomy in robot-based BI
relied on hand-picked features of the environment in order
to trigger correct robot actions. Additionally, none of these
automated architectures attempted to learn the BI from human
demonstrations, though this appears to be the most natural way
of learning. This paper represents the first attempt to design
a robot that uses LfD to learn BI. We generate a model then
correctly predict appropriate actions with greater than 80%
accuracy. To the best of our knowledge, this is the first attempt
to employ DRQN within an LfD framework to learn high level
reasoning embedded in human actions and behaviors simply
from observations.

I. INTRODUCTION

Designing robots to serve in the health-care industry is
considered a realistic solution to compensate for the deficit
in skilled health-care professionals [1]. Recent research has
supported this by indicating the clinical utility of robots in
different therapeutic interventions [2]. Specifically, socially
assistive robots have proven to be a potential avenue for de-
livering behavioral intervention (BI) to children with various
intellectual and developmental disorders (IDD) [3]. Contem-
porary research on robot-mediated interventions (RMI), how-
ever, has relied exclusively on tele-operated robots. While
tele-operation is a reasonable approach for investigating HRI
factors and clinical utility, the lack of autonomy is increas-
ingly being considered as a critical factor that is hindering
the real-world deployment of robots [4]. The majority of the
works that use autonomous RMI architecture hard-code the
interaction. The robot’s perception is limited to hand-picked
features of the environment in order to trigger appropriate
robot actions [4], [5]. Each child with IDD is unique, and
different children may respond to the same intervention in
different ways. Personalizing every intervention for each
child is, therefore, highly inefficient, if not impossible. The
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Fig. 1. The NAO humanoid robot engaged in a behavioral intervention. A
depth camera is located to left of the robot.

inherent dependency on the robot-programmer also makes
the real-world deployment even more challenging.

Learning from demonstration (LfD), a popular robot learn-
ing paradigm, offers an elegant solution to these problems.
LfD advocates the idea of enabling lay users to teach robots
new tasks/skills simply by showing how to conduct the task
and without requiring any special knowledge about robots or
programming [6]. The core challenge of LfD lies in deriving
a mapping between perceived features and actions (a.k.a. a
policy) from a limited number of demonstrations. To date,
learning generalized representations of motion trajectories is
one of the most successful domains in LfD research [7].
Compared to trajectory learning, learning of high level rea-
soning and the spatio-temporal relationship among discrete
events in everyday life from demonstration data is a relatively
under-explored domain in the LfD literature. Only a handful
of recent works have been dedicated to understanding simple
concepts from observations, e.g., symbol grounding [8], [9],
invariance in spatial relationships during a motor task [10],
[11], task network structure [12], etc. Robot-based BI offers
a novel application of LfD where a robot will have to learn
the relationships among discrete events that are triggered by
humans in a highly-structured fashion. Learning this relation-
ship involves understanding the policy that a human therapist
maintains while delivering an intervention. Such a policy
is, typically, specific to the child and the intervention and
evolves over time as a child makes gradual progress in skill
learning. Accordingly, a LfD framework involves observing
multiple BI sessions in order to learn a BI. Observations, in
this case, may range from obvious responses related to the
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Fig. 2. Examples of compliant (a) and non-compliant (b) responses. In the
compliant case the participant is looking at the robot and responding with
both a wave and a vocal greeting. In the non-compliant case the participant
refuses to respond to the robot and their gaze is directed away from the robot.
(c) The video cropped to focus on a participants face. (d) Point cloud data
observed through the depth camera as the subject waves. (e) A spectrogram
of collected audio.

task/skill being taught to subtle multimodal cues expressing
compliant/non-compliant behaviors of a child. Hand-crafting
multimodal features related to these responses and cues for
various interventions is an extremely tedious task. But the
correct action of a robot (and of a human therapist, too)
always depends on identifying the appropriate features. The
recent development of the Deep Q-Network (DQN) offers
an elegant form of human-style decision making without
worrying about low-level feature selection [13] .

In this paper, we present an LfD framework capable of
learning the steps in a BI procedure simply from observing
multiple sessions of that procedure. We use a variant of
DQN, the deep recurrent Q-network (DRQN), which is
capable of learning feature information observed in pixel
data received over several time steps. DQNs are a form of
reinforcement learning that has received significant attention
since it was first used to develop policies that could beat
human players at several Atari video games [13]. The DQN
has since been applied to several similar problems including
the board game Hex [14], the video game Super Smash
Bros.[15], and language understanding in text-based games
[16] and it has proven to be a reliable method for policy
learning in problems with large state spaces. Despite these
apparent merits, DQN has, until now, failed to find appli-
cation in LfD problems and has been poorly represented

in robotics domains in general. Delivery of a BI involves
complex human reasoning which is manifested as a highly-
structured interaction. This makes DRQN an elegant choice
for learning BI from observation data.

To the best of our knowledge, this paper makes the first
effort to employ a DRQN for learning relationships among
human-triggered discrete events from demonstration data.
This is also the first learning-based approach for robot-
mediated behavioral intervention.

This paper is structured as follows: Section II provides a
description of the BI and the DRQN, which is used to learn
an appropriate policy. Section III describes the methods used
to collect our training data and the procedure used to train
our DRQN. Section IV provides an evaluation of our system
trained on the demonstration data. Section V summarizes our
findings.

II. DRQN FOR BEHAVIORAL INTERVENTION

In this work we adopted applied behavior analysis (ABA),
a popular and successful method for designing BI for
children with IDD [17]. Our previous tele-operated RMI
study was able to teach a group of autistic children a new
behavior with a 20% success rate using an ABA-based
BI [18]. Accordingly, we adopted the same ABA-based BI
protocol for the work presented in this paper but, instead of
tele-operation as in [18], we now learn this protocol from
observations.

A. A social greeting BI

An example of the social greeting BI that we learned
is shown in Table I. In a typical ABA-based BI session
the therapist begins by delivering a verbal command and
then awaits a response from their client. The client can
provide either a compliant or non-compliant response. In
the compliant case the therapist provides some form of
reinforcement such as verbal praise. If the client is noncom-
pliant or responds incorrectly then the therapist can try to
deliver a corrective prompt encouraging the client to provide
the compliant response. Several corrective responses can be
delivered until either a compliant response is observed or
the therapist intentionally ends the session. Reinforcement
and prompts must be provided at specific times in order to
properly encourage the desired behaviors. Failure to execute
the intervention in the structured manner can negatively
impact the client’s ability to learn the desired skill.

B. Modeling the social greeting BI for robot training

We train the robot to perform four actions: command,
prompt, reward, and abort. The command and prompt actions
cause the robot to wave and greet the participant. The
later delivers a corrective prompt that describes what is
expected of the participant: that the user respond by saying
“hello”. Both reward and abort are actions that transition the
problem to terminal states. The reward action is functionally
equivalent to performing both the “User response is positive”
branch of step 3 in Table I followed by step 4, rewarding the
subject for responding and then ending the session. The abort
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Fig. 3. The structure of the DRQN for behavioral intervention. Nodes in the convolutional stacks use filter size (F), stride (S), and number of filters (N).

# Speaker Behaviors

1 Therapist
(Robot) Wave hand as shown in Figure 1 and say “Hello, X”.

2 User X

[positive response]
User responds by saying “Hello” or by waving.

[negative response]
User does not respond to the robot or responds
incorrectly.

3 Therapist
(Robot)

[if User response is positive]
say “Great Job!” then go to step 4.

[if User response is negative]
Wave hand and prompt “X, say hello to me.” Go
to step 2.

[if User response is negative consistently]
Go to step 4.

4 Therapist
(Robot) Say “Good Bye, X.”

TABLE I
EXAMPLE ABA INTERACTION

action follows the “User response is negative consistently”
branch of step 3 and concludes the session.

After the command and prompt actions are performed our
model takes observations of the participant in the form of
video, depth, and audio data. Collectively we consider these
observations as the state for our problem.

We provide positive rewards when actions are performed
correctly or no reward when they are performed incorrectly.
We also maintain a discount value (γ) of 0.9 to bias policies
towards obtaining rewards sooner as opposed to later.

C. Deep Recurrent Q-Learning of BI

Q-learning is a common reinforcement learning approach
that generates a policy by matching state(s)-action(a) com-
binations to Q-values (Q(s, a)). Q-values are obtained from
repeated passes through the world space and indicate the
expected value of performing the given action while in the
provided state. Successfully reaching a terminal state updates
the Q-values of all state-action pairs that were observed by
the agent by using

Q(s, a) = Q(s, a) + α(r + γmax
a′

Q(s′, a′)−Q(s, a)) (1)

Traditional Q-learning is a reasonable solution to small
problems provided that there exists the expectation that
most if not all of the state-action pairs will be investigated.
Unfortunately, many real-world problems do not possess this
luxury and in cases where the state space is expansive, such
as our problem which uses video to represent the state,
predictive models must be used to estimate the Q-values for
a given state-action pair.

The deep Q-network (DQN) is one such model that uses
convolutional neural networks (CNN) to assign Q-values to
actions given the current state and a combination of weights
and biases (written together as θ). The DQN approaches a
problem that is fundamentally different from CNNs in that it
involves interactions that persist over several time steps. As
a result the DQN model (Q) has two structural differences
not found in CNNs: experience replay and parameter setting
using a second model (Q̂). Experience replay refers to the
the use of a replay memory (D) that stores experience tuples
of the form et = (st, at, rt, st+1). Experience tuples are
examples from a training set that are composed of the current
state (st), the action that was performed in that state (at), the
reward that was received after performing that state-action
combination (rt), and the state that the system subsequently
transitioned to (st+1). In our problem our state is represented
by a video stream with accompanying audio and depth
information along with the number of prompts delivered so
far. Our available actions and the rewards associated when
performing them are listed in Section II-B. The DQN is
trained by randomly selecting tuples from D using st as
the input and using a one-hot encoding of at multiplied by
rt for labels. We use a structurally identical model Q̂ to
generate the expected reward for the subsequent state. The
loss function

Li(θi) = E(st,st,rt,st+1)[(yi −Q(st, at; θi))
2] (2)

is used to update the i-th iteration’s values for θ. In the case
where st is a non-terminal state

yi = rt + γmax
a

Q̂(st+1, a; θ
−) (3)
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otherwise
yi = rt (4)

The values (θ) of Q̂ are infrequently updated to be the
same as those in Q. By delaying updates to Q̂ the updates
in Q become more stable, and we prevent oscillation in the
training data [19].

When obtaining observations in our BI we accumulate
information over an extended and variable period of time.
It is inappropriate to assume that participants will begin
responding at the same time and that their responses will
be a uniform length, especially among IwASD. As such we
use an extension of the DQN, the deep recurrent Q-network
(DRQN), to incorporate time sensitive and sequential in-
formation into our predictions. DRQNs alter the DQN by
replacing the final fully connected layer of the DQN model
with a long-short term memory (LSTM) layer [19]. LSTM
provides the DQN with a memory allowing new input data
to influence the Q-values with the context of previous data.
LSTM cells have been used in many recurrent neural network
(RNN) applications including language modeling [20] and
video classification [21]. The LSTM cell is represented using
the tuple (c, f, i, o, h) [22]. Where c, f , i, and o refer to
the cell, forget gate, input gate, and output gate vectors
all of which are h in length. The cell contains data that
persists across the entirety of the sequence being read into
the RNN. The cell acts as the memory for the RNN and
is manipulated by the various gates in the LSTM node in
order to retain important information or lose unimportant
data. The forget gate is used to discard information from the
cell vector, whereas the input gate adds new information to
the cell. The output gate determines the aspect of the new
information, passed into the RNN and modified by the cell,
to output as ht. The vectors can also be expressed formally
as follows

ft = σ(Wf [̇ht−1, xt] + bf ) (5)

it = σ(Wi [̇ht−1, xt] + bi) (6)

Ct = ft ∗ Ct−1 + it ∗ tanh(WC [̇ht−1, xt] + bC) (7)

ot = σ(Wo [̇ht−1, xt] + bo) (8)

ht = ot ∗ tanh(Ct) (9)

with W as weight variables, b as biases, and σ as the sigmoid
function. Figure 4 shows a depiction of the LSTM cell.

As a result of their size and complexity, RNNs are
particularly hard to train and can become subject to vanishing
gradients. Vanishing gradients occur when states in later
layers of a neural network are not influenced by the changes
on previous layers. Vanishing gradients prevent the network,
as a whole, from learning long-term time dependencies [23]
such as a compliant response observed early in a long
video sequence. One solution for this problem is batch
normalization, a regularization method that uses the mean
and variance of mini-batch updates to normalize layer inputs
in CNNs [23]. A recent study has expanded this idea to
generate a batch normalized recurrent neural network by

Fig. 4. An LSTM cell. The forget gate is indicated in blue, the input gate
in red, and the output gate in green. The sigmoid function is indicated with
σ and multiplication and addition functions are represented using × and +
respectively.

normalizing the inputs into an LSTM cell [24]. The batch
normalized LSTM (BN-LSTM) cell allows normalization in
large RNNs. This allows changes to the current time step
to occur based on information potentially thousands of time
steps in the past. We use the implementation described in
[24] to normalize the inputs for our LSTM cells.

III. TRAINING

In order to train our DRQN we performed an IRB ap-
proved user study with a tele-operated robot. The DRQN was
implemented using Tensorflow and we used ROS to control
the robot. Our system can be located at [25].

A. Data Collection

We collected demonstration data to train our DRQN
through a user study in which a tele-operated NAO humanoid
robot interacted with users. The user study consisted of
11 students from the University of New Hampshire (10
male and 1 female). The participants performed a total of
20 sessions with the tele-operated robot as it delivered a
social greeting BI. Participants were asked to provide an
equal number of compliant and non-compliant responses.
In order to reduce the risk of participant fatigue and in
order to generate significant data we restricted the length
of the sessions so that no more than two prompts could
be delivered. A noncompliant case was one in which the
participant failed to respond to either prompt and a compliant
response was any session in which either the first or second
prompt was positively responded to. During the user study,
all participants were aware that the robot was tele-operated.
Observation data was collected using the NAO’s camera, the
NAO’s microphone, and a depth camera situated to the left
of the robot (Figure 1).

After curation of our dataset to remove examples that were
erroneous, ambiguous, or included video that was shorter
than 10 frames in length, we possessed 105 compliant and
102 non-compliant sessions. We preprocessed the data in
order to highlight regions of interest and reduce noise. Video
taken using the NAO’s camera was cropped to foveate the
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view of the participant’s face and head (Figure 2(c)). When
a face could not be identified the image was left unaltered.
We also processed the audio input by passing the dry
audio data through a finite impulse response (FIR) filter to
reduce noise. FIR filters smooth and reduce the noise of one
dimensional signal data. The filtered data was then converted
into a spectrogram (Figure 2(e)) which was separated into a
number of frames equal in length to the video and depth
data. Spectrograms are two dimensional representations of
audio frequencies over time [26]. Spectrograms have seen
significant use in many deep recurrent network architectures
that process or generate sound data. Finally we doubled the
number of input demonstrations by duplicating each input file
with horizontally mirrored video and depth data. The filtered
audio spectra were not altered in the mirrored examples
because spectrograms are defined by their orientation.

B. DRQN Structure

Our DRQN processes observation data as a collection
of frames. A single frame consists of a 3-channel image
taken from the NAO’s camera, a single-channel point cloud
array from the depth camera (Figure 2(d)), and a 3-channel
spectrogram of the audio data. In order to reduce the number
of parameters in our system, each frame was re-sized to
be 80 pixels in both height and width prior to being read
into the DRQN. We also pass an additional parameter to our
model in order to define the state: the number of prompts that
had been given so far in the interaction. Calling the abort
action is dependent on the length of the interaction, a factor
that cannot be discerned from the raw pixel data but is still
integral to our state definition.

Our DRQN network architecture can be observed in Figure
3. The structure was modeled after the network described in
[19]. We use three CNN stacks, one for each type of data
being processed. The stacks are identical in structure but are
composed of independent weights and biases. Each stack is
composed of three convolutional layers separated by ReLU
activation layers. After the data from the frame has passed
through the CNN stacks, the outputs are merged together
and passed to two stacked BN-LSTM layers. The BN-LSTM
layers identify time relevant data that occurs across many
frames. The output of the final BN-LSTM is combined with
the number of prompts that have been delivered in the BI so
far. These combined values are passed into a fully connected
layer that outputs the Q-values for each action. Once the
entire response has been parsed, we execute the action that
has the highest Q-value. We include the number of prompts
at the end of our network since the value is neither multi-
dimensional nor does its expression vary over time.

Because our system required live subjects to be trained,
we were unable to take the typical reinforcement learning
approach of repeatedly sampling experience data from the
test problem. We instead configured the demonstrations we
obtained in our user study to resemble experience replay.
Because of the small datasets that DQNs are exposed to, they
are typically trained with an adaptive learning rate optimizer.
We selected the ADAM [27] optimizer as it builds upon

other adaptive learning rate optimizers such as RMSProp and
ADAdelta [28].

IV. EVALUATION

We evaluated our system by using leave one out cross-
validation to assess the models generalizability. Our model
was trained using mini-batches of 10 demonstrations deliv-
ered over the course of 38 epochs. To perform the cross-
validation, we removed all of the examples of a specific
participant from the training dataset and then evaluated them
after the model had finished optimizing. Figure 5 shows the
accuracies obtained by the DRQN model when evaluating
each participant. We obtained an average accuracy of 62.8%
from our cross-validation. Based on our demonstration data
we found that a random policy will be accurate 43.3%
of the time, therefore, our model shows an increase of
approximately 150% in its ability to correctly generalize an
action from unknown data.

The highest value we observed in our cross-validation
was 83.3%. This indicates that the examples generated
with participant 7 coincided with the features our model
associated with compliant and non-compliant interactions.
It also shows that should our model be exposed to the
entire training dataset it is likely to obtain a very high
level of accuracy. Conversely, the accuracy obtained from
the model tested with participant 8’s examples was the lowest
(43.2%), and was comparable to selecting actions randomly.
The result from participant 8’s model was interesting in
that the training dataset had yet to converge by the 38th
epoch, unlike models that were trained with participant 8’s
examples. This implies that the examples generated with
participant 8 provided several strong features that were easily
learnt by other models. When those examples were removed
from the training set, it was difficult for a robust model to
be generated. However, we believe that with further training
epochs important features could have been identified by the
optimizer, increasing the model’s accuracy.

In our study we found a trend that indicated a larger
number of filters in the convolutional layers improved the
overall generalizability of the system. The improved accuracy
likely results from a greater expression of the various features
in the demonstration data. It is very likely that increasing the
amount of training data would improve the accuracy of the
system, but we consider our model’s accuracy, given our very
limited set of examples (further limited when performing
cross-validation), to be promising. Modifications that vary
the data could also generate a more robust trained model (ie.
brightness, scaling, different audio filters).

V. CONCLUSIONS

Feature based robotics applications suffer from several
drawbacks including reduced generalizability and the poten-
tial for information to be lost as a result of designer bias.
Deep Q-learning provides an alternative to the challenges of
perception in that it can identify significant features in large
image datasets and is able to generate a policy from a few
examples. As a result, deep Q-learning seems an appropriate
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Fig. 5. Cross-validation results of our DRQN. The accuracy of each model
when trained without the indicated participants is shown in black. The grey
line represents the average accuracy of the cross-validation.

tool to solve many LfD problems. We reinforced this claim
by using a DRQN model to generalize the features important
in a robot mediated BI with greater than 80% accuracy. Our
future goal is to now deliver an automated version of our
behavioral therapy using the generated DRQN model. We
also hope to further improve our model’s accuracy through
the use of transfer learning. Transfer learning allows neural
networks to use the feature information learned by networks
trained on large data sets such as ImageNet [29]. We will also
investigate the use of both optical flow and visual attention
towards improving our models predictive capability.

Having indicated the potential for deep Q-learning to solve
robotics problems, we also intend to investigate its effec-
tiveness on other, more complex LfD domains. We would
like to improve our existing system further by removing the
restrictive assumptions we place on our problem (e.g. limits
on the number of prompts performed). By investigating the
roles that time constraints place on certain action executions,
we can clearly define when actions should and should not
be performed.
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