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Abstract— We are interested in learning the high-level policy
of multi-step sequential (MSS) tasks, such as activities of daily
living, from video demonstrations. Videos of MSS tasks are
typically long in duration and exhibit large feature variance,
especially when captured in non-engineered settings. Learning
task policy from such videos using state-of-the-art end-to-end
approaches is sample inefficient due to a reliance on pixel-level
information. Understanding the unique temporal structures of
MSS tasks can make policy learning easier and sample effi-
cient. However, understanding this temporal structure requires
analyzing the entire content of the video or a task which is
a complex and under-explored area in the current literature.
We propose a hierarchical solution to this problem where i)
an automated feature selection process extrapolates temporally
grounded task-relevant features from the video and then ii) a
stochastic policy learning model learns a feature-constrained
task policy. The proposed model is sample efficient (trained
using less than one hour of demonstration data) as a result
of substituting selected temporally-grounded features for pixel-
level information. We demonstrate the efficacy of our proposed
framework by teaching a YuMi robot a long-duration, multi-
step task – tea making – from videos. We present results on
sample efficiency and robustness against data loss. We also
compare our performance to that of a state-of-the-art approach
of task learning from real visual demonstrations.

I. INTRODUCTION

We envision a future where robots serve lay users in homes
and workplaces. Visual demonstration is probably the most
convenient way for a layperson to teach a robot new tasks.
Many real-world tasks that a service robot is expected to
perform have multiple-steps and are sequential, e.g. making
a cup of tea, following a recipe when cooking, or preparing a
dinner table, etc. We recognize such processes as MSS tasks
(multi-step, sequential tasks) in the remainder of this paper.
Our goal is to learn MSS tasks from visual demonstrations
of human collected in natural environments. However, this
is a challenging problem setting for vision-based learning
from demonstrations (LfD) since i) demonstration videos
have long duration (typically tens of seconds) and exhibit
large variations among visual features, ii) videos must be
explored entirely to understand the broader temporal context
of the task, and iii) the task must be learned from only a
handful of video demonstrations; as there is no access to
simulators to provide additional demonstrations or to allow
the robot to explore the effect of its primitive actions. To the
best of our knowledge, no framework exists that can learn a
MSS task under these constraints.
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Interest in task learning from videos has increased in re-
cent years [9], [11], [16], thanks to advances in convolutional
neural networks (CNNs). However, the majority of vision-
based LfD research deals with learning low level trajectories
for simple manipulation tasks [12], [21], [33]. These are
single-step tasks that can be learned from isolated images
without understanding the temporal context. On the contrary,
effective learning of most MSS tasks require an understand-
ing of the broader temporal context [16], e.g. in the context
of a tea-making task, the water should be boiled before it is
added to a cup. Regardless of the policy learning method
(e.g. behavior cloning (BC) [35], reinforcement learning
(RL) [4], or inverse RL [29]), almost all vision-based LfD
works require a large amount of training data which are
generated through either simulators [11] or alternative real-
world means that are not feasible for MSS tasks such as
automated self-play which can occur over thousands of hours
[16], [32]. A handful of recent works focus on learning
MMS tasks from videos [25], [26], [28], [34], [43], [47].
Some of them require specialized training data such as
videos from multiple view-points [47], some need access
to a simulator [25], while others require a separate training
phase where the robot learns through interacting with the
environment [34], [43]. The MSS task learning work most
closely related to our work is the GTI [26] which also do
not assume any access to a simulator. The method however
suffers from sample inefficiency. Additionally, all of these
works deal with MSS tasks consisting of only three to five
steps and are not long in duration. Another family of research
leverages the idea of meta-learning for task learning from a
very few video demonstrations [15], [38], [46]. Although
some of these methods may learn a task from as few as
a single demonstration, training the meta learner requires a
massive number of demonstrations of related tasks. Overall,
learning MSS tasks in a sample efficient manner from
long-duration videos while also understanding the broader
temporal context of the task is a challenging LfD problem
that is largely under-explored. We propose a hierarchical
solution to this problem. The proposed approach leverages
two facts: first, understanding the innate temporal structures
of MSS tasks from videos will benefit policy learning and
secondly, instead of probing every pixel in a video when
conducting policy learning (an approach employed by CNN-
based approaches [15], [16], [21]), focusing only on task-
relevant features makes the learning more sample efficient.
However, how to find features in a video that are task-
relevant? is itself a critical research question. We hypothesize
that the first fact provides the answer: through capturing



Fig. 1: The proposed approach: task relevant temporally grounded visual features are extracted from input videos (blue box;
Section III-A) and used by a policy learner to learn a high-level task policy (yellow box; Section III-B)

temporal structure of the task. Accordingly, we propose an
approach for learning MSS tasks from videos in two steps:

Step 1. Learning task-relevant features: This step iden-
tifies a set of temporally grounded features that characterize
the nature of the MSS task from the demonstration videos.
We propose a method to identify temporally grounded visual
features from raw videos while leveraging concepts from
Allen’s interval algebra [1]. We show empirically that these
features describe MSS tasks better than visual features that
are only spatial in nature. This step requires that video
demonstrations of the task are segmented, to create state-
action pairs.

Step 2. Feature-constrained policy learning: This step
learns a stochastic policy that is biased only toward the fea-
tures (from Step 1) that characterize the task. We accomplish
this with a policy learner that leverages the concept of feature
expectation matching (FEM) and the maximum entropy
principle (MEP). Fig. 1 shows an overview of this process.
Note that the very concept of separating learning of features
and policy is not new [24]. However, hand-selecting features
in all prior works (as opposed to choosing features in a data-
driven manner) severely impact the generalization ability of
the learning process. The proposed approach overcomes this
limitation. It is important to note that our focus is to learn
the high-level policy – the sequences of sub-tasks that can
reach the desired goal state – not the motor actions. We used
kinesthetic teaching [5] to teach the motor actions required
for executing different sub-tasks.

Our primary contribution lies in proposing a novel vision-
based LfD framework where a feature selection strategy
works with a complementary policy learning algorithm to
learn MSS tasks from only a handful of video demonstra-
tions. We demonstrate the proposed framework’s ability to
learn a MSS task – namely, tea-making – from videos.
The task contains 7 sub-tasks and with a mean duration
of 2 minutes. Also, we empirically demonstrate that i)
visual features that understand the temporal context of the
task contribute more toward policy learning than those that
are purely spatial in nature, ii) task-relevant features make
the policy learning sample efficient, and iii) the proposed
framework is not highly sensitive to video segmentation
error, as might be caused by a video segmentation algorithm.
The proposed approach assumes a known set of actions, a
common assumption in all high-level policy learning tasks.

Additionally, the features being used to train the model are
assumed to be present in the visual dataset. We compared
against one of the most recent approaches GTI [26] as it is
the closest to our work.

II. RELATED WORK

A. Policy learning from visual data

A majority of the existing vision-based LfD architectures
rely on CNNs to learn neural network policies as supervised
learning, also called behavior cloning (BC). Almost all of
these works learn single-step continuous control tasks such as
navigation [31], manipulation [21], [33], and grasping [12].
Due to the reactive nature of these tasks, these approaches
can use CNN inference on individual frames of the video
data rather than processing the entire video as an observation
in its own right. They often require large pools of publicly
available training data [39], leverage established simulators
to augment their datasets [11], or investigate tasks that are
simple enough that robots can autonomously collect visual
experiences without the use of human demonstrators [32].
These accommodations are unrealistic for MSS tasks.

Recently, hierarchical imitation learning based approaches
are showing a great promise for learning MSS tasks from
videos [25], [26], [28], [34], [43]. In these methods a high-
level policy predicts sub-tasks and a low-level policy com-
putes motor commands to execute different sub-tasks. The
major critic of this line of work is that they require different
types of special accommodations. For example, the work in
[34] require a third network – in addition to a sequence to
sequence network [40] that generates the sequence of sub-
tasks – to detect and generate the position of each object in
the task. The method in [47] require images from multiple
view-points to train two clustering algorithms – for sub-task
identification – and two neural networks – for generating
required actions – triggering the need of extensive amount of
parameter tuning to achieve the reported accuracy. However,
the most constraining requirement in [47] is the joint angles
of the robot which nullifies the appeal of the visual imitation
learning. The methods in [25], [28] rely on a hierarchical
model to predict the sub-goal sequence and then use an
RL technique to generate the low-level motor commands.
However, using an RL technique requires a task simulation
that might not be available for each task. Alternatively, the
robot can be allowed to interact with the world to learn



safe movements – an approach which is feasible in the
controlled lab setting yet completely non-viable when a lay
user is training the robot in the wild. A common critique
of all existing work on visual imitation learning is sample
inefficiency – it requires a between 300 to 700 samples to
train the complex set of perception networks involved with
policy learning [34].

In the recent years meta learning based approaches are
showing promises in task learning from a very few demon-
strations. [38], [46]. Although a specific task can be learned
from as few as a single demonstration, the meta learner is
trained with a large number of demonstrations of related
tasks – e.g. 7194 demonstrations in [46]. To this date, meta
learning allows to generalize to a new task that has a very
high degree of similarity (both in task structure and the
environment) with the learned ones.

B. Learning broader temporal context from videos

Several deep learning models have been developed to learn
temporal information from video data but they represent
data in a manner that is ill-suited for the vision-based LfD
problem setting we are interested in. For example, recurrent
neural networks (i.e. long short-term memory [42]) develop
temporal features by aggregating frames of the visual input
sequentially. The resulting information is notoriously difficult
to interpret and learned representations often fixate on frame-
to-frame variances, inhibiting the ability to capture long-term
dependencies in the data [45]. Convolution-based approaches
(1D convolutions [41], 3D convolutions [7], and pyramidal
structures [44]) are recognized for placing a greater signifi-
cance on spatial features as opposed to the temporal contents
of video [6]. Capturing temporal features with graphical
approaches is the best option for generating easily accessible,
temporally focused representations of the data. However,
these methods are novel and existing implementations ex-
plore spatial relationships instead of temporal features [45].

III. VISION-BASED LEARNING OF MSS TASKS: A
HIERARCHICAL APPROACH

A. Learning task-relevant features

The hallmark of most MSS tasks is their high-level tempo-
ral structure, e.g. in the context of a tea-making task, turning
on the kettle after pouring the water in or stirring the cup
after milk or sugar is added etc. We aim to learn this to
facilitate policy learning in a sample efficient manner. We
propose a novel, temporally-informed ranking approach that
selects a subset of visual features from a video based on their
temporal significance. First, we identify temporal features
expressed in videos using a novel wrapper that explicitly
investigates the temporal importance of CNN-learned visual
features. This temporal information is used to generate a
ranking over the available visual features.

1) Temporal Feature Identification: Temporal feature
identification occurs as a pipeline using the learned spatial
features to generate a graph of temporal relationships. This
graphical structure, an interval temporal relationship (ITR)
graph, is used to train a graph convolutional network (GCN)

which is then queried by the proposed ranking approach. Fig.
2 shows an overview of this process.

Spatially-expressed visual features are obtained from any
standard CNN backbone model that has been fine-tuned to
identify some of the spatial features present in a task-related
dataset. The backbone model and the fine-tuning procedure
used in this work are discussed in Section IV-B. Frames
from the demonstration videos (Fig. 2a) are parsed into
a CNN backbone model to generate activation maps M
(Fig. 2b). Each activation map is a 4-dimensional tensor
(F ×H×W ×T ) denoting the relative expression of learned
features, where F : the number of features, H: height, W :
width, and T : time. Fig. 2b uses darker shades to denote
stronger feature expression. We propose a method to infer
the presence of temporal features in a video observation
from an activation map. We begin by reducing the spatial
dimensions of our activation map. We apply the maximum
function over H and W of the activation map to reduce
the representation to two dimensions (F × T ). The reduced
representation, shown in Fig. 2c, clearly indicates the relative
expression of each feature at each time. We threshold this
expression in order to determine when a feature is and is not
being expressed. This distinction is useful for distinguishing
the nature of the temporal relationship that exists between
two spatial features. We select a different threshold value
(Φf ) for each feature (f ∈ F ) using the average expression
of that feature over the entire dataset. We investigated other
thresholding metrics and found none performed as well as the
one described. Values in the activation map that fall below
(Φf ) are set to 0. The thresholded activation map (Fig. 2d)
can be transformed into a graph. Each node in this graph
denotes a different spatial event, a period when a specific
spatial feature is actively expressed in the observation. We
define these nodes with a four tuple < ts, te, f, fmax >
containing the time step when the feature began (ts) and
stopped (te) being expressed, the feature label (f ), and the
maximum expression observed from that feature over the
duration it was expressed (fmax). Directed edges between
these nodes are identified by leveraging Allen’s interval
algebra (IA), a principled set of relationships that define
how two temporal events overlap [1]. Using 7 temporal
relationships (before (b), meets (m), overlaps (o), during (d),
starts (s), finishes (f), and equals (e)) we relate each pair of
nodes in our graph using ts and te. The complete process
results in a graph (Fig. 2e) whose nodes represent periods
of event expression (captured by f and fmax) and whose
edges denote the temporal relationships that exist between
those nodes. This graph representation is used to train a GCN
classifier which learns the discriminatory temporal features
present in the ITR graph. GCN inference begins at the nodes
of an ITR graph and with iterative convolutions extends
a complex representation to neighboring nodes along the
graph’s edges (temporal relationships). Informative temporal
relationships in the graph are recognized and reinforced
while uninformative relationships are pruned.

2) Feature Ranking: We have used a popular ranking
approach, erasure ranking [22], to identify the most important



Fig. 2: Extraction of temporal feature graph. See section III A for details

Fig. 3: Task Setup

features in the videos by class label (c ∈ C). Erasure ranking
iterates through each of the input features and evaluates
the trained model’s performance when a specific feature
is removed. The greater the impact on the model’s logit
values (V ) the greater the significance that the given feature
contributes towards the trained model. The ranking (R) of a
feature is evaluated as a normalized sum over all examples
(e) of a given class in the demonstration set (D) and can be
calculated using:

R(f, c) =
∑
e∈D

V (e, c, f)− V (e, c,¬f)

V (e, c, f)
(1)

We rank the temporally-grounded visual features extracted
using the method discussed in Section III-A.1. For this we
apply erasure search over the feature labels that compose the
ITR graph, removing each node (and all connected edges)
that have the given feature label f . We also rank features that
are purely spatial in nature. For that, we train a linear model
using the reduced activation maps in Fig. 2c, which do not
capture the explicit temporal relationships between features,
and investigate how the accuracy performs as each feature is
removed. Our goal is to compare the efficacy of temporally-
grounded and purely spatial features in policy learning.

Each video in the demonstration set D is hand-segmented
into M segments where M is the number of actions in
the task. For each video segment, a set of ranked features
{sj}Mj=1 is extracted using the methods discussed in this
section, s = {fn}Nn=1, N : the number of features from each
segment. These sets, along with the action labels {aj}Mj=1,
are passed to the policy learning algorithm as state-action
pairs (sj , aj) to perform feature-constrained policy learning.
It is important to note that video segmentation is required
only during training, not at run-time. This step can be
automated using any of these recent action segmentation ap-
proaches(e.g. [13], [23]. Action segmentation is a standalone
field of research and it is beyond the scope of this paper.

B. Feature-constrained policy learning

The goal of the policy learner is to learn a stochastic
policy π(a|s) that matches the expert policy π̃(a|s) demon-
strated in the videos. For methodological correctness, we
assume, as our basic framework, a Markov decision process
(S,A, P, r, ρ0) with the stochastic shortest path objective
(assuming some terminal states) [4], where S is the state
space (s ∈ S), A is the action space (a ∈ A), and ρ0 ∈ ∆S

represents the distribution over the initial state. Here, ∆S

denotes the probability simplex over the set S. The unknown

transition probabilities are P : S × A → ∆S and the
unknown rewards are r : S × A → R. We also assume that
the distribution π̃ : S ∈ ∆A over the states that represents
the expert’s probability of visiting the state is uniform over
the states in D.

We use the features identified in Section III-A to learn
π(a|s) and assume nothing else about the model, to be as
uniform as possible with all of the unknowns. We learn such
a policy π(a|s) by leveraging two ideas: feature expectation
matching (FEM) [8], [30] and Maximum Entropy Principle
(MEP).

1) Learning a policy that matches a set of feature expec-
tations: We want to learn a policy π(a|s) that accords with
a set of continuous task-relevant features fi, i = 1, 2, . . . , n
that are derived from the demonstration set D by the feature
learning module discussed in Section III-A. The fi(s, a) are
the value of the feature f while we are in a state s and
taking action a. A popular way to impose such a restriction
on π(a|s) is to make it satisfy the following equality, also
known as FEM [8], [30], [49], where the feature expectations
are computed as follows:

Eπ̃[fi] = Eπ[fi], i ∈ {1, 2, . . . , n}∑
s∈S

∑
a∈A

p̃(s)π̃(a|s)fi(s, a) =
∑
s∈S

∑
a∈A

p̃(s)π(a|s)fi(s, a)

(2)
This is a general definition of the features in fi(s, a). If
the features used to describe an action are different, we
would need to loop over the actions but this is uncommon
occurrence as we demonstrate in our experiments (Section
IV-C.1). Here p̃(s) is empirical distribution of the states.
Equation (2) will give us a policy π(a|s) that has the same
expected values for feature fi as seen in the demonstration
D. Simplified, if we see in the videos that an action a was
taken an average q times in state s, the learned policy will
take that action at that state with a probability q/M where
M is the total number of video demonstrations. The only
issue here is that in the space of all possible π(a|s), there are
many distributions which observe this constraint. To pick one
specific policy, we further constrain π(a|s) to be completely
unbiased to all other features that may exist in the feature
space. A popular way to realize this is finding the distribution
π(a|s) that has the maximum entropy [3].

2) Learning a policy that has the maximum causal en-
tropy: The causal entropy of the condition distribution



π(a|s) is expressed as follows.

H(π) ≡ −
∑
s∈S

∑
a∈A

p̃(s)π(a | s) log π(a | s) (3)

Among all π(a|s), we aim to pick the one that has the
maximum entropy. Accordingly, we solve the following
optimization problem to compute the policy π(a|s):

max
π∈RS×A

H(π) ≡ −
∑
s∈S

∑
a∈A

p̃(s)π(a|s) log π(a|s)

s.t. Eπ̃[fi]− Eπ[fi] = 0 i = 1, . . . , n∑
a∈A

π(a|s)− 1 = 0 ∀ s ∈ S
(4)

Using the standard convex duality arguments (for space we
have omitted the full proof), we can see that the optimal
solution π to (4) must satisfy, for some Lagrange multipliers
λi ∈ RN , that [2], [3]:

−
{

max
λ

Λ(λ) ≡ −
∑
s∈S

p̃(s) log zλ(s) +

N∑
i=1

λi
∑
s∈S

∑
a∈A

π̃(s, a)f(s, a)

} (5)

where zλ(s) =
∑
a∈A exp

(∑N
i=1 λifi(s, a)

)
is a normal-

ization constant. As mentioned earlier, it is likely that each
action will be defined by different features, therefore, we
need to specify fi(s, a). However, in our experiment we
used the same set of features for all the actions, a common
practice among most learning tasks [17], [49]. By solving
Equation (5) we can get a generalized solution:

π(a|s) = (zλ(s))−1 · exp

(
N∑
i=1

λifi(s, a)

)
(6)

The sample efficiency of the proposed framework can be
understood through Equation (6). The policy expression in
(6) relies only on n task-related features extracted from
videos using the method discussed in Section III-A. As long
as these features represent the task with a certain accuracy,
the policy in Equation (6) will allow a robot to execute the
task as seen in the video demonstrations.

Note that a widely popular approach for inverse reinforce-
ment learning from demonstrations, Max-Ent IRL [49] and
later variants [17], also matches feature expectations while
maximizing entropy. Our policy learner, however, follows the
idea of behavior cloning (BC) [18]. This is primarily because
BC does not require access to additional data (collected with
a simulator) nor does it require the knowledge of the full
system dynamics as in [48], [49]. The BC, therefore, is an
appropriate tool for learning real-world tasks.

C. Policy Execution

The only run-time assumption we make is that the task
always begins from the same initial state. The policy ex-
ecution follows these steps at run-time: 1) Image frames
captured by a camera are fed to the feature learning module
discussed in Section III-A. We process 64 frames at a time.

This generates fi, a set of features representing the current
state. These features are pruned according to the ranking
method selected by the user (temporal or spatial). Of the
remaining features we select the max value of the feature
fi. This is the final representation of the current state of
the task. 2) Using the current state of the task and the
learned model in (6) we generate a probability distribution
over the high-level actions and choose the high-level action
with the highest probability to perform next. 3) Finally, the
appropriate controls are sent to the robot to execute the high-
level action. We used kinesthetic teaching [5] to teach the
robot how to generate the controls required by the different
high-level actions (see the attached video). Note that video
segmentation is required only during training, not at run-
time.

IV. EVALUATIONS

We conducted three experiments to evaluate the proposed
framework with respect to the contribution of temporally-
grounded features towards accuracy, sample efficiency, and
robustness against video-segmentation accuracy. We also
compared the performance of the proposed method against
that of GTI [26] – a closely related work on learning MSS
tasks from video demonstrations. All experiments are done
in the context of learning a tea-making task.

A. Demonstrations

We created a video dataset that focused on a singular MSS
task: making a cup of tea. Fig. 3 captures the environment
where the demonstrations were collected from four partici-
pants in an IRB-approved study. Tea making tools (pitchers,
teabag, sugar, etc.) were placed in fixed locations on a table.
The available actions were: turn on/off the oven, add water,
add sugar, add milk, add teabag, and stir. We Participants
were asked to use all of the actions while following one spe-
cific sequence so that we can study the effectiveness of our
feature selection approach and our ability to learn a correct
policy purely from videos). Each participants provided 12
demonstrations, resulting in 48 videos. Each video lasts for 2
minutes on average, making the data collection process very
quick (less than one hour). The video demonstrations were
subsequently segmented and labeled by hand. Videos were
collected at 30fps and down-sampled to 10fps. Our dataset
and code are available here[10].

B. Feature and policy learning

As discussed in Section III-A, we rely on a CNN-backbone
to identify spatial features. Our work specifically uses VGG-
16 [37] to capture the presence of spatial features in the
actions, though other models could be employed. VGG-
16 (originally trained on ImageNet) was fine-tuned on the
tea-making dataset. The CNN was trained to recognize the
action labels using 64 frames sampled uniformly from each
video. The frames were reduced to 224× 224 pixels in size
and subject to background subtraction before being fed into
the CNN. The model was trained using an Adam optimizer
with a learning rate of 1e − 3 over 50 epochs. The ITR



graph contains an exponential number of edges for each
spatial feature being investigated, to constrain the number of
computations required by our model we apply a bottleneck
layer prior to the inference layer of the network, condensing
the number of features inferred by the model from 2048 to
32.

As discussed in Section III-A, a GCN was used to per-
form temporally-grounded feature ranking. Specifically, we
employed R-GCN for its ability to learn from discrete edge
labels [36]. A simple linear layer was used to make class
inference when performing purely spatially grounded feature
ranking. In both cases, the networks were trained using the
same optimizer, learning rate, and number of epochs as were
used to train the backbone model.

C. Experiments

1) Policy accuracy and the role of good features: The
goal of this experiment is to demonstrate how task-relevant
features, identified through our proposed approach, help to
learn an accurate policy in a sample efficient manner. The
accuracy of a policy is defined as (Number of correctly cho-
sen actions / Total number of executed actions) ×100. The
proposed approach follows the principles of BC for policy
learning and this accuracy metric provides a clear indication
of how well the mapping function maps states to actions.
We compare the policy accuracy between: task-features fi
formed using high-ranked temporally-grounded features and
task-features formed from high-ranked spatial features. We
further investigated the number of task-features required by
each cases to achieve different degrees of accuracy. Finally,
we investigate the relationship between accuracy and the
number of samples (i.e., the video demonstrations). Figs. 4a
and 4b show findings from these experiments. For the same
number of samples and task-features, the policy accuracy
is higher when task-features are temporally-grounded as
compared to when they are purely spatial in nature. An
accuracy of 100% can be achieved with 30 temporally
grounded task-features collected only from 15 demonstra-
tions whereas 30 demonstrations are needed to achieve the
same accuracy with the same number of spatial task-features.
Even with only 5 demonstrations, 5 temporally grounded
task-features can achieve an accuracy of 60%. But more
than 25 spatially-grounded features were required to achieve
the same accuracy. These results show the significant role
temporally grounded features play in learning good policies
for MSS tasks from a handful of video demonstrations.

We perform a visualization-based analysis to try and
discern the properties of the temporally-grounded features
that lead to their greater significance. Fig. 6 shows several
of the features ranked highly by the spatial (a) and temporal
(b) ranking approaches in the context of the ‘Add Water’
action. From a qualitative perspective the spatially-grounded
features are redundant and capture many of the same visual
properties at approximately the same time points. If these
properties are not visible in the video, then they are likely to
be absent across several features (dark blue and dark yellow).
In contrast the features highlighted by the temporal ranking

Frame Loss Model Accuracy
0% 100.0%
10% 100.0%
20% 92.0%
30% 75.0%
40% 75.0%

TABLE I: Robustness

approach are scattered throughout the video. These features
capture different aspects of the interaction such as grasping
and replacing the pitcher (red) and different stages of pouring
the pitcher (blue and yellow).

2) Sample efficiency: The goal of this experiment is to
compare the sample efficiency of our proposed method
with a popular vision-based BC baseline [27], [35]. We
define sample efficiency as the number of samples (complete
demonstration) that are required to learn a specific task.
As a baseline, we compare to the established BC method,
which models πBC using a neural network with parameters
θBC . We find these parameters using maximum-likelihood
estimation: θBC = arg maxθ

∏
(s,a)∈D πBC(a|s). With a

given dataset of state-action pairs, we split the dataset using
70% of the demonstrations for training and the remainder
for validation. We train the policy with supervised learning
using ADAM [19], until the validation error stops decreasing.
Both the proposed policy learner and the BC baseline are
trained using the top 30 temporally-grounded features. The
sample efficiency results are shown in Fig. 5. Our method
dominates the BC baseline, achieving a 100% accuracy using
only 15 samples while the later required all 48 samples to
achieve the same result. As the feature input is the same, the
sample efficiency of our method can be directly attributed
to the way we develop our action distribution according to
FEM and MEP, which results in a more robust policy. For
comparison, the baseline BC method optimizes a maximum
likelihood function over the entire dataset.

3) Robustness: The proposed model requires hand seg-
mentation of the demonstration videos to generate task-
relevant features. We investigate the sensitivity of the learned
policy as a factor of segmentation accuracy. We evaluate this
by manually introducing segmentation error to our data by
removing frames from the beginning and ends of each video
snippet. We then calculate the accuracy of the policy learning
model to determine how robust our policy is to data loss.
Using the 30 top-ranked temporally grounded features we
evaluate the policy accuracy with increasing degrees of data
loss (Table. I). The accuracy of the model does not drop until
20% of the frames (12 frames) have been deleted where upon
it drops to 92%. Removing additional frames up to 40% (26
frames) reduces the overall accuracy of the model to 75%.
With almost half of the video eliminated we were still able
to maintain a relatively high policy accuracy.

These results show that the policy is tolerant to seg-
mentation errors. These results suggest that we can replace
hand-segmentation with any off-the-shelf video segmentation



(a) Spatial features (b) Temporal features

Fig. 4: Accuracy of the learned policy where the states are defined by the most highly-
ranked features according to the two different ranking methodologies.

Fig. 5: Sample efficiency results

(a) Spatially-Grounded Features

(b) Temporally-Grounded Features

Fig. 6: The expression of spatial features identified as highly
significant to the spatial and temporal models. Frames of
the video are depicted in grey-scale with colored regions
denoting areas of intense feature expression.

algorithm (e.g. [13], [23]) which will always generate a
certain amount of error when segmenting videos. Note that
the current implementation makes two assumptions about
video segmentation performance namely, segmentation labels
are not duplicated and a specific set of actions are visible
in each demonstration. Design of video segmentation algo-
rithms with these two attributes is an active research area
in computer vision and is a different research topic from
the contribution of this paper. However, incorporating such
algorithms, as soon as they are available, in the proposed
framework is a focus of our future work.

4) Comparison with GTI [26]: The proposed approach
and GTI [26] shares the same core idea of learning a MSS
task from a handful of videos and without accessing a
simulator. We trained the GTI with 48 video demonstrations
of the tea-making task. we leveraged the implementation
used in 1 to do the comparison.

The GTI and the proposed approach achieved 65.0% and
100.0 % accuracy, respectively in learning the tea-making
task. In order to make a fair comparison, this accuracy is
calculated only in predicting the high-level actions or sub-
tasks. This is because the proposed approach assumes no loss
in accuracy from kinesthetic teaching-based motor command

1https://github.com/UT-Austin-RPL/BUDS

executions while the GTI learns the motor command in
addition to the high-level actions. We can attribute the poor
performance of GTI to two factors: a) number of demon-
strations: The GTI uses conditional Variational Autoencoder
(cVAE) [20] with a ResNet-18 [14], both are known as data-
hungry models. Training them only with a handful of videos
caused the model to lose accuracy. b) Task-complexity: The
original GTI model in [26] was tested with a much simpler
task with only 3 to 4 sub-tasks where each sub-task involves
moving and/or placing pots and lasted for 5 seconds. Tea-
making is a more complex task with longer duration (2
minute) and involves more complex sub-tasks each of which
lasted for 15 seconds. The results imply that GTI does not
generalize well to long-duration tasks – such as tea-making
– investigated in this paper.

V. CONCLUSION

Contemporary vision-based LfD models are insufficient to
learn MSS tasks in a sample efficient manner. The proposed
forked approach toward task learning autonomously learns
task-relevant features which then guides feature-constrained
policy learning. Evaluated on a tea making MSS task we
demonstrated the superiority of a temporally cognizant fea-
ture ranking approach compared to traditional spatial feature
focused methods, when selecting task-relevant information
to drive our policy learner. Additionally, our policy learner
was able to leverage these features to ensure high accuracy
in a sample sparse dataset. Our future work will investigate
unexplored areas such as variations among demonstrations
and the presence of repetitive actions.
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