CS 733/833 Intro to Mobile Robotics

Prof. Momotaz Begum, mbegum@cs.unh.edu

Course Description

This course will introduce the foundational theory and practices in mobile robotics. The following topics will be covered

- 1. Robot kinematics: Matrix Algebra, coordinate transformation, wheeled locomotion
- 2. Common sensors: odometry, sonar, laser, depth, camera, and sensor processing
- 3. Probability theory: Axioms, Discrete and continuous random variables, Joint probability, Bayes theorem, Normal distribution and its properties
- 4. Robot navigation: Obstacle avoidance, path planning,
- 5. Robot localization: Kalman filter and particle filter for localization
- 6. Simultaneous localization and Mapping (SLAM)

Laboratory sessions is directed toward learning the Robot Operating System (ROS), understanding robot kinematics and sensor data.

Assignments, Exams, Project: There will be seven quizzes, one final exam, and four labs. Lab: 25%; Theory: 75%

Labs: Lab grade will be based on lab assignments, reports, and performance in the lab.

Grades:

Seven Quizzes: 50% Four Lab Assignments: 20% Final Exam: 30%

Programming: Python and ROS.

Reference: The primary textbook for this course is "Introduction to Autonomous Mobile Robots," by R. Siegwart, I. R. Nourbakhsh, MIT Press, 2011. The e-book is available at UNH library. Some materials covered in lectures are from the following books (all available in the library):

- Probabilistic Robotics, by S. Thrun, W. Burgard, and D. Fox, The MIT Press, 2005
- Principles of Robot Motion, by H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, The MIT Press, 2005
- Introduction to AI Robotics, by R. R. Murphy, The MIT Press, 2000

A Tentative Schedule

	Event	Date	Торіс	Out/Due
Week 1	Lecture 1	August 29	Course and people Introduction	
	Lecture 2	August 31	Linear Algebra (LA) basics	
			No lab	
Week 2	Labor Day	September 5	No Classes	
	Lecture 3	September 7	Transformation matrix (TM) I	
	Lab 1	September 9	Introduction to Lab	Lab 1 out
Week 3	Lecture 4	September 12	Transformation matrix II	
	Lecture 5	September 14	Robot Kinematics I: Fundamentals	Q1 (LA and
			of locomotion, wheel geometry and	TM)
			kinematic constraints	
	Lab 1	September 9	Introduction to ROS	
Week 4	Lecture 6	September 19	Robot Kinematics II: ICR,	
			maneuverability, steerability,	
			Holonomic constraints	
	Lecture 7	September 21	No class: Momotaz @ NSF meeting	
	Lab 2	September 23	Introduction to ROS	Lab 1 due
				@5:oopm
Week 5	Lecture 8	September 26	Robot Kinematics III: Differential	
			drive robot	
	T d		Sensors for mobile robots	
	Lecture 9	September 28	Motion Planning (MP):	
			Configuration space, Path Planning:	
			Combinatorial (visibility graph, cell	
	Lab 2	September 30	decomposition, Voronoi diagram) Introduction to RViz, Gazebo	Lab 2 out
Week6	Lecture 10	October 3	A* search algorithm	Q ₂
WEEKO	Lecture 10	October 3		(Kinematics)
				(Rinematics)
	Lecture 11	October 5	A* search example, Obstacle	
	Lecture II	occoder y	Avoidance (OA): Bug and VFH	
	Lab 2	October 7	Introduction to RViz, Gazebo	
Week 7		October 10	Mid-semester break (No Class)	
week 7	Lecture 12	October 10 October 12	Potential field (PF) for path planning	Q3(MP,A*,
	Lecture 12	October 12	and OA	sensor, OA)
	Pre-Lab 3	October 14	Writing a ROS Node for TurtleBot	Lab 2 due
	TTE-Lab 3	000000114	writing a ROS Noue for Furthebot	Pre-lab3 out
Week 8	Lecture 13	October 17	Potential field for OA and MP	11C-1ab3 Out
WEEK O	Lecture 13	October 19	Review of Probability theory I	
	Pre-Lab 3	October 19	Writing a ROS Node for TurtleBot	practice
	TIE-Lau 3	October 21	writing a KOS Noue for TurtleDot	practice

Week 9	Lecture 15	October 24	Bayesian Probability and occupancy	
			grid map updating	
	Lecture 16	October 26	Robot Navigation I (Basics)	
			** Understanding Sensor Data **	
	Lab 3	October 28	Mobile Robot Kinematics and	Pre-Lab3
			Odometry	due
				Lab3 out
Week 10	Lecture 17	October 31	Robot Navigation I (contd)	$Q_4 (PF+$
	Lecture 18	November 2	Robot Localization I: Markov	Probability)
			Mobile Robot Kinematics and	
	Lab 3	November 4	Odometry	
Week 11	Lecture 19	November 7	Robot Localization II: Markov	
WCCKII	Lecture 20	November 9	Robot Navigation I: Kalman Filter	Q5:
	Lecture 20	November 9	Kobot Navigation I. Kaiman Theer	(Mapping,
				navigation,
				Markov)
		November 11	Veterans days UNH Closed	,
Week 12	Lecture 21	November 14	Robot Navigation II: Kalman Filter	
week 12	Letture 21			
week 12	Lecture 22	November 16	Robot Navigation III: Kalman Filter	
WEEK 12	-	November 16 November 18	Robot Navigation III: Kalman FilterMobileRobotKinematicsand	Lab 3 due
week 12	Lecture 22			Lab 3 due
Week 12 Week 13	Lecture 22		MobileRobotKinematicsandOdometryRobotNavigationIV:ParticleFilter	Lab 3 due
	Lecture 22 Lab 3	November 18	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No Class	Lab 3 due
Week 13	Lecture 22 Lab 3	November 18 November 21 November 23 November 25	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No Lab	Lab 3 due
	Lecture 22 Lab 3	November 18 November 21 November 23	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No Class	Lab 3 due Q6 (KF)
Week 13	Lecture 22 Lab 3 Lecture 23 Lecture 24 Lecture 25	November 18November 21November 23November 25November 28November 30	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No LabRobot Navigation IV: Particle FilterRobot Navigation V: Particle Filter	Q6 (KF)
Week 13 Week 14	Lecture 22 Lab 3 Lecture 23 Lecture 24 Lecture 25 Lab3	November 18November 21November 23November 25November 28November 30December 2	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No LabRobot Navigation IV: Particle FilterRobot Navigation V: Particle FilterRobot Navigation V: Particle FilterReal robot demo by TA	
Week 13	Lecture 22 Lab 3 Lecture 23 Lecture 24 Lecture 25	November 18November 21November 23November 25November 28November 30December 2December 5	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No LabRobot Navigation IV: Particle FilterRobot Navigation V: Particle FilterRobot Navigation V: Particle FilterSLAM	Q6 (KF) Optional
Week 13 Week 14	Lecture 22 Lab 3 Lecture 23 Lecture 24 Lecture 25 Lab3	November 18November 21November 23November 25November 28November 30December 2December 5December 7	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No LabRobot Navigation IV: Particle FilterRobot Navigation IV: Particle FilterRobot Navigation V: Particle FilterReal robot demo by TASLAMSLAM	Q6 (KF)
Week 13 Week 14 Week 15	Lecture 22 Lab 3 Lecture 23 Lecture 24 Lecture 25 Lab3 Lecture 26 Lecture 27	November 18 November 21 November 23 November 25 November 28 November 30 December 2 December 5 December 7 December 9	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No LabRobot Navigation IV: Particle FilterRobot Navigation V: Particle FilterRobot Navigation V: Particle FilterSLAMSLAMNo Lab	Q6 (KF) Optional
Week 13 Week 14	Lecture 22 Lab 3 Lecture 23 Lecture 24 Lecture 25 Lecture 26 Lecture 27 Lecture 27	November 18November 21November 23November 25November 28November 30December 2December 5December 7	Mobile Robot Kinematics and OdometryRobot Navigation IV: Particle FilterThanksgiving, No ClassThanksgiving, No LabRobot Navigation IV: Particle FilterRobot Navigation IV: Particle FilterRobot Navigation V: Particle FilterSLAMSLAMNo LabExam review	Q6 (KF) Optional

This schedule will be adjusted frequently based on the progress of the class. The instructor reserves all rights to change the lecture topics, exam dates, and due dates for assignments and labs during the semester.

Q: quiz (20-40 minutes, 2-4 questions)