CS 780/880 Intro to Mobile Robotics, Spring 2018

Lectures: MW 12:40 pm - 2:00 pm, Kingsbury N113 Lab: W 4:10 pm - 6:00 pm, Kingsbury N242

Instructor:	Prof. Momotaz Begum, <u>mbegum@cs.unh.edu</u>
Office hours:	M-W: 11:00 AM to 12:00 PM or by appointment, Kingsbury N215A
Lab assistant:	Estuardo R Carpio-Mazariegos, <u>erp48@wildcats.unh.edu</u>
Office hours:	TBA

Course Description

This course will introduce the foundational theory and practices in mobile robotics. The following topics will be covered

- 1. Robot kinematics: Linear algebra, coordinate transformation, wheeled locomotion
- 2. Robot control architecture: Hierarchical paradigm, Behavior-based control, Hybrid paradigm
- 3. Robot perception: Common sensors (odometry, sonar, laser, depth, camera) and sensor processing
- 4. Probability theory: Axioms, Discrete and continuous random variables, Joint probability, Bayes theorem, Normal distribution and its properties
- 5. Robot vision: Fundamentals of image processing and computer vision for robotics
- 6. Robot navigation: Obstacle avoidance, path planning, robot localization using Kalman filter and particle filter, SLAM

Laboratory sessions will be directed towards real-world implementation of learned knowledge on a Turtlebot (<u>http://www.turtlebot.com/</u>). Hands-on experience from the labs will contribute to the final project.

Assignments, Exams, Project: There will be three homework assignments, three quizzes, seven labs, and one final project. There is no final exam in this course.

Labs: Lab grade will be based on lab assignments, reports, and performance in the lab. The final project is a part of the lab.

Grades: Assignments: 20%

Quizzes: 45%

Lab assignments, reports, and performance: 15% (undergraduate) 10% (graduate) Final project: 20% (undergraduate) 25% (graduate)

- a) Presentation: 5
- b) Demo: 10 (15)

c) Report: 5

Programming: Python/C++/Matlab and Robot operating system, ROS (Matlab is compatible with ROS).

Reference: There is no designated textbook for this course. The instructor will provide all required materials. However, materials covered in lectures has significant overlap with the following books (available in the library):

- Introduction to Autonomous Mobile Robots, by R. Siegwart, I. R. Nourbakhsh, MIT Press, 2011.
- Principles of Robot Motion, by H. Choset, K. M. Lynch, S. Hutchinson, G. Kantor, W. Burgard, L. E. Kavraki and S. Thrun, The MIT Press, 2005
- Introduction to AI Robotics, by R. R. Murphy, The MIT Press, 2000
- Computational Principles of Mobile Robots, by G. Dudek and M. Jenkin, Cambridge University
 Press, 2000
- Probabilistic Robotics, by S. Thrun, W. Burgard, and D. Fox, The MIT Press, 2005

A Tentative Schedule

The schedule will be adjusted frequently based on the progress of the class. The instructor reserves all rights to change the lecture topics, exam dates, and due dates for labs/homework assignments during the semester.

	Event	Торіс
Week 1	Lecture 1	Course and people Introduction, ROS
	Lab 1	
Week 2	Lecture 2	Linear Algebra I
	Lecture 3	Linear Algebra II
	Lab 2	
Week 3	Lecture 4	Robot Kinematics I: Fundamentals of locomotion,
		wheel geometry and kinematic constraints
	Lecture 5	Robot Kinematics II: Differential drive robot I
	Lab 3	
Week 4	Lecture 6	Robot Kinematics III: Differential drive robot II
	Lecture 7	Robot Kinematics IV: DDR: kinematic modelling
	Lab 4	
Week 5	Lecture 8	Sensors for mobile robots I (sonar, laser, and misc)
	Lecture 9	Path Planning: configuration space
	Lab 5	
Week6	Lecture 10	Quiz # 1 (Lectures 1 to 7)
	Lecture 11	Path Planning: Combinatorial (visibility graph, cell
		decomposition , Voronoi diagram)
	Lab 6	
Week 7	Lecture 12	A* Search/Search algorithms -Project
······································	Lecture 13	Probability theory I
	Lab 7	
Week 8		
	I contrare l	Deck defly the contract
Week 9	Lecture 14	Probability theory II Robot/Computer Vision I
	Lecture 15	*
Week 10	Lab 8 Lecture 16	Project Robot/Computer Vision II
	Lecture 17	Robot/Computer Vision III
Week 11	Lab 9 Lecture 18	Project Robot/Computer Vision IV
	Lecture 19 Lab 10	Obstacle avoidance I (Bugi and Bug2)
Week 12		Project
	Lecture 20	Quiz# 2 (Lectures 8-18)
	Lecture 21	Obstacle avoidance II (potential field method and
	Lab 11	vector field histogram) Project
Week 13	*	Mapping and Exploration: Frontier-based
week 13	Lecture 22	Robot Navigation I (Bayes Filter)
	Lecture 23	
Week 14	Lab 12	Project Robot Navigation II (Kalman Filter)
	Lecture 24	
	Lecture 25	Robot Navigation III (KF and Particle filter)
¥47 1	Lab 13	Project
Week 15	Lecture 26	Robot Navigation IV (Particle Filter)
	Lecture 27	Robot Navigation V (PF)
X47 1 -	Lab 14	Project demo and presentation
Week 16	Lecture 28	Robot Navigation VI (PF)
		Quiz #3 (Lectures 19-28)