Word Embeddings - Semantics: What is in my Documents?

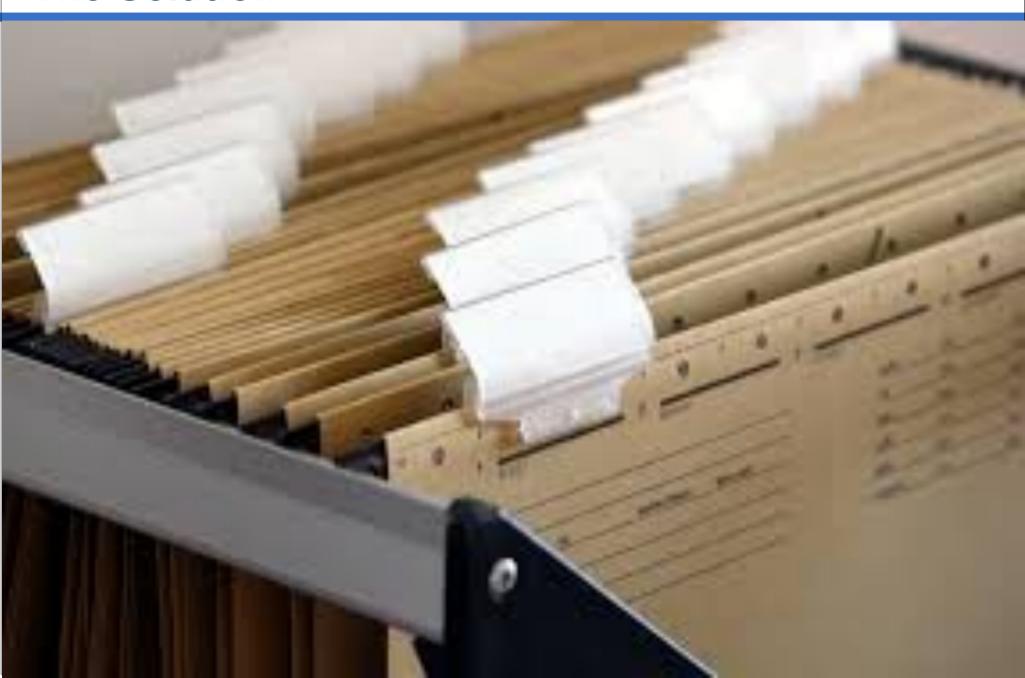
Laura Dietz

University of New Hampshire dietz@cs.unh.edu

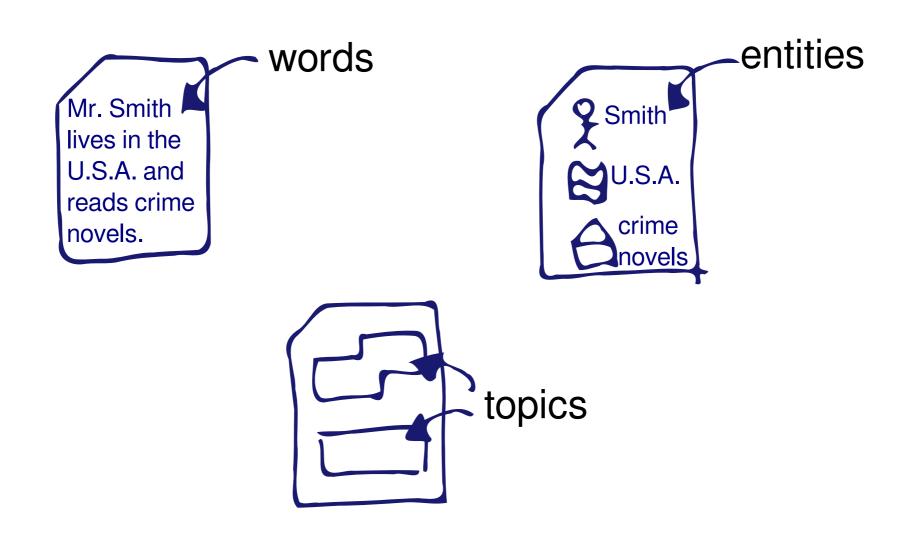
University of New Hampshire

The Problem

The Solution



Collections of Text



Outline

Different techniques to inspect your documents.

- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

Why am I qualified to give this Talk?

Laura Dietz - Computer Scientist

2000: Software Developer

2004: Semantic Web

2006: Machine Learning / Topic Models

2011: Natural Language Processing / Entity Linking

2013: Information Retrieval with KGs

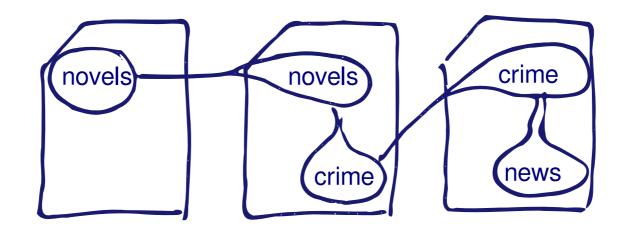
2016: Assistant Professor

Outline: Topic Models

Different techniques to inspect your documents.

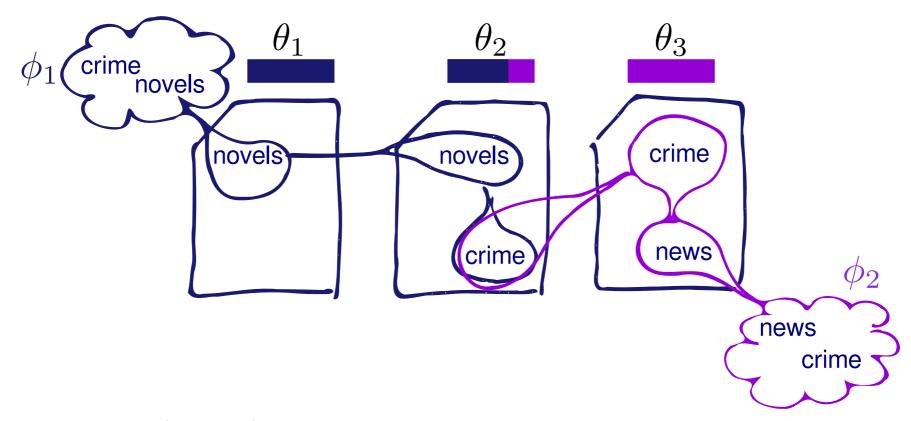
- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

Topic Models



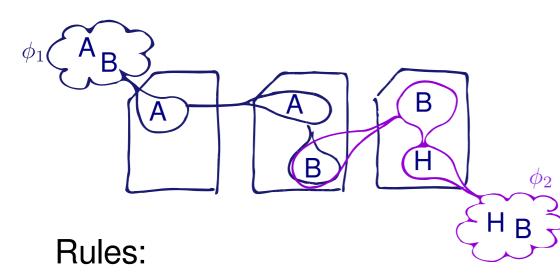
- Same words are likely about the same topic.
- Words in the same document are likely about the same topic.

Topic Models



 $\phi_{topic}(word)$ high if word is important for topic. $\theta_{doc}(topic)$ high if topic important for doc.

Topic Model Exercise - Apply rules to find topics!



doc 1: BAGC

doc 2: B A D I

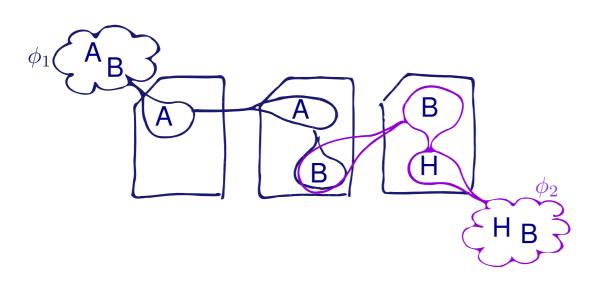
doc 3: BAFH

doc 4: EAFH

doc 5: E A G C

- 0. Assign each word a random topic.
- 1. Assign two same words to the same topic.
- 2. Assign two words in the same document the same topic.

Topic Model Exercise - Solution



A: read F: the

B: politicians G: crime

C: novels H: news

D: legal I: texts

E: people

doc 1: B A G C politicians read crime novels

doc 2: B A D I politicians read legal texts

doc 3 : B A F H politicians read the news

doc 4: E A F H people read the news

doc 5: E A G C people read crime novels

Laura Dietz dietz@cs.unh.edu - Summer School Series on Methods for Computational Social Science 2018

Topic Model Toolkits

- LDA-c
- Mallet
- Topic Model Toolbox
- Stanford Topic Modeling Toolbox
- Tomoto

Extensions for:

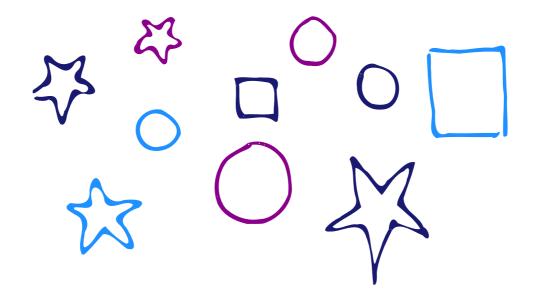
Authors [Rosen-Zvi 04], Time [Wang 06], Citation networks [Dietz 07], Ideal point [Gerrish 10] Friend-networks [Dietz 12], Taxonomies [Bakalov 12], and so many more....

Topic Model Caveats

Some topics are great (aka "spot on") others are merged/split or don't make sense.

It is impossible to know which topics are correct.

There are many correct solutions:



Please Evaluate Tools!

When your research relies on a tool make sure it works in *your* domain and for *your* task!

...otherwise you may draw wrong conclusions!

Issues of Topic Models

Topic models are based on assumptions that intuitively hold for topical words. ...but also for many "misleading" words.

Which are the topical words?

Many **politicians** in the **U.S.A.** like to **read crime novels**.

We don't know which are the topical words we are looking for.

Topic Model Issues

politicians read crime novels

politicians read legal texts

read

politicians read the news

people read the news

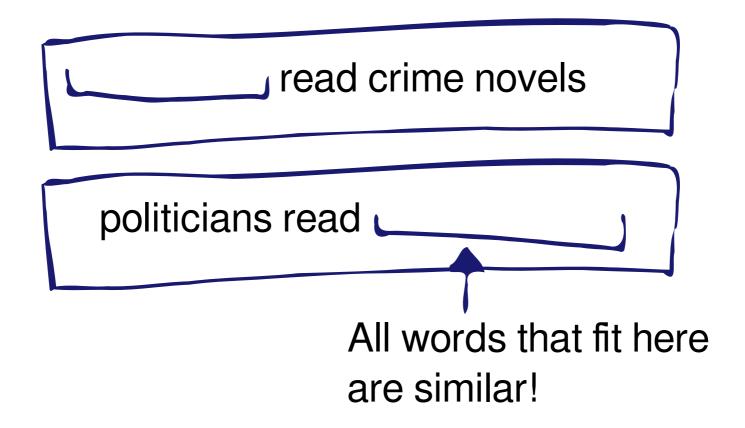
people read crime novels

"read" bridges two topics

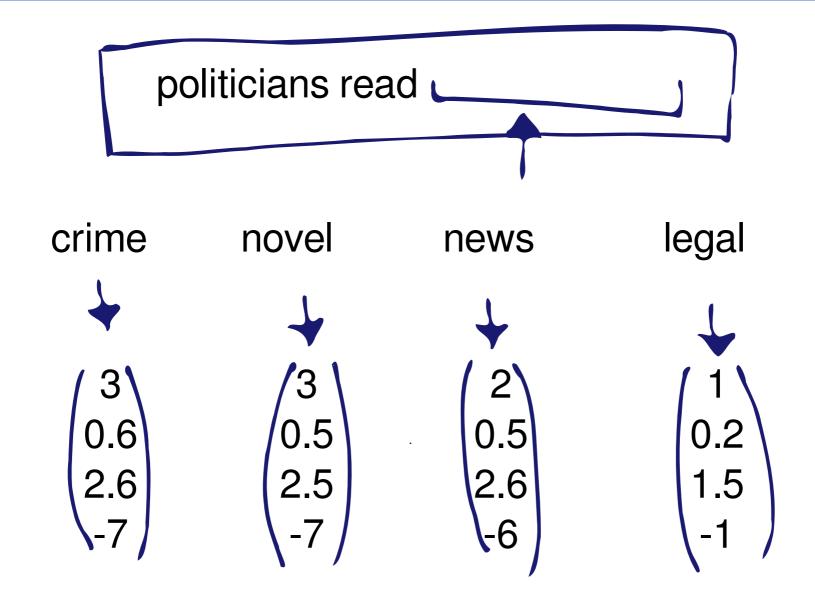
Outline: Word Embeddings

Different techniques to inspect your documents.

- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

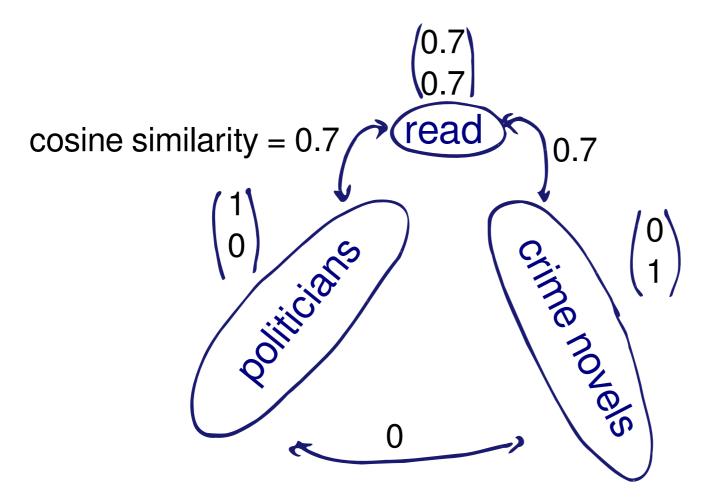


Word Embeddings



Multiple Meanings with Word Embeddings

"Read" can have the same distance to both words, without these words being similar to each other.



Word Embedding Issues

Learns similarity according to **types**. (e.g., crime novels, legal texts & news are similar).

But often does not learn **topical** similarity. (e.g., a novel, its author, and its subject are different).

Word Embedding Toolkits

Word2vec GloVE Gensim

Download pre-trained embeddings (avoid using embeddings from different domains) or train embeddings yourself (all you need is text)

(you may also like SeqToSeq)

An Apology...

We computer scientists don't have a fool proof method for extracting topics from text.

(but next, a few things that work...)

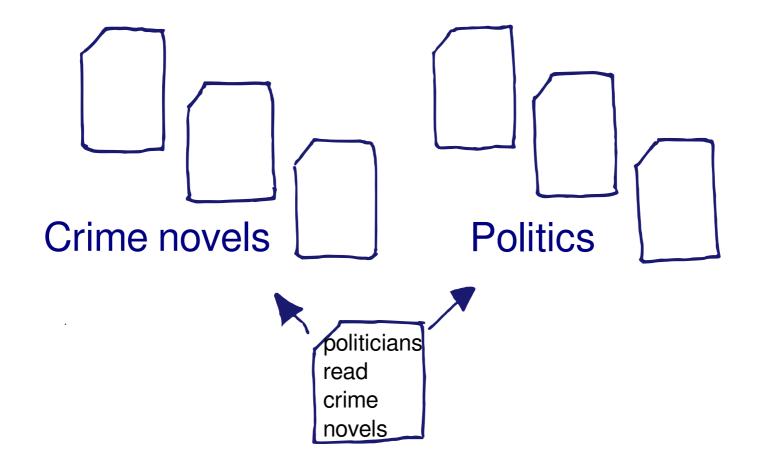
Outline: Text Classification

Different techniques to inspect your documents.

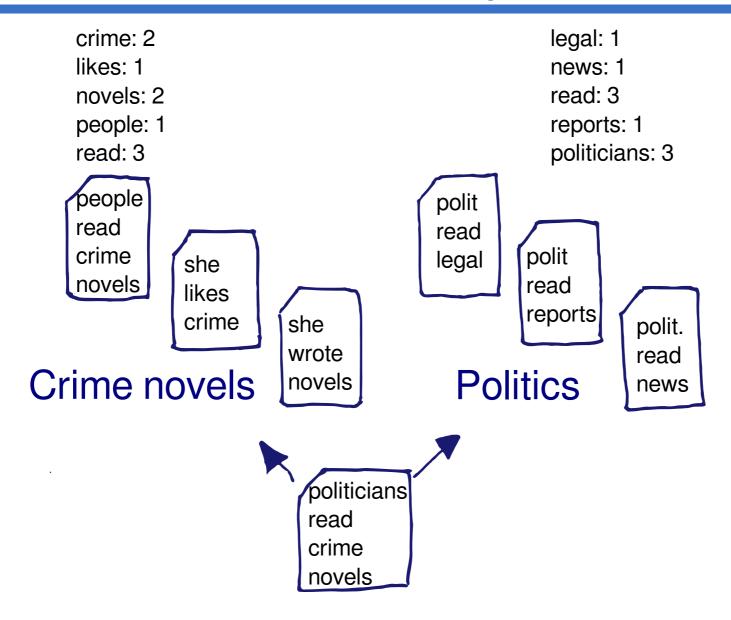
- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

Text Classification

Caveat: Needs labeled training data for *your* domain and *your* task!



Text Classification (Naive Bayes)



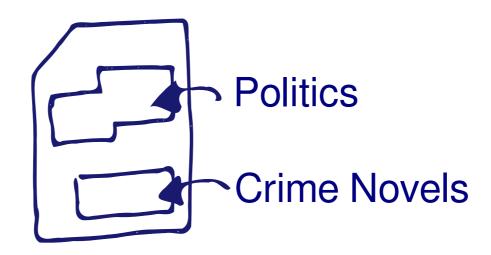
Text Classification Toolkits

Support Vector Machines (SVM)
Random Forests
Weka
Scikit.learn

Text Classification Issues

Requires a lot of manual training data. (labor-intensive, not feasible for fine-grained topics).

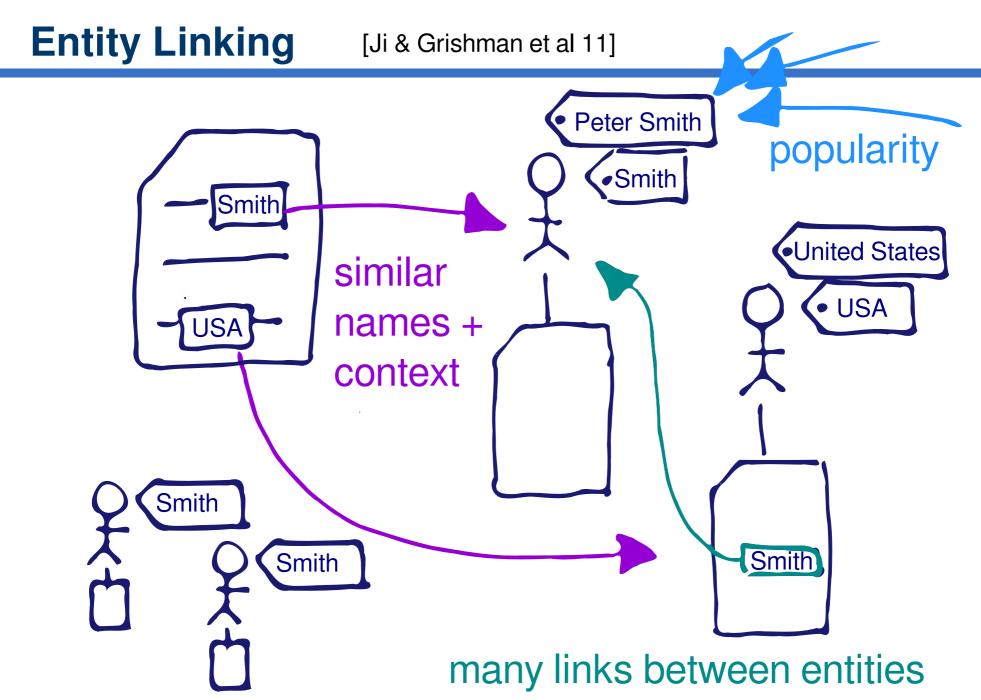
Often only a portion of text is on topic. (see Multi-label classification.)



Outline: Entity Linking

Different techniques to inspect your documents.

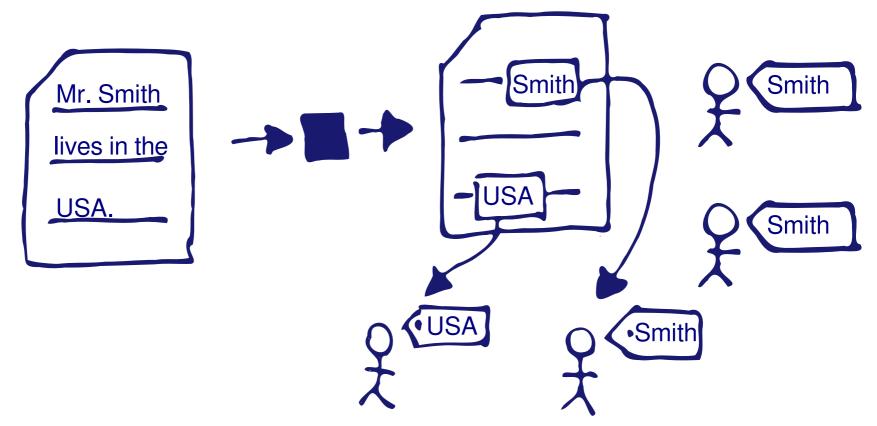
- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)



Laura Dietz dietz@cs.unh.edu - Summer School Series on Methods for Computational Social Science 2018

Entity Linking

A black box that takes text and...

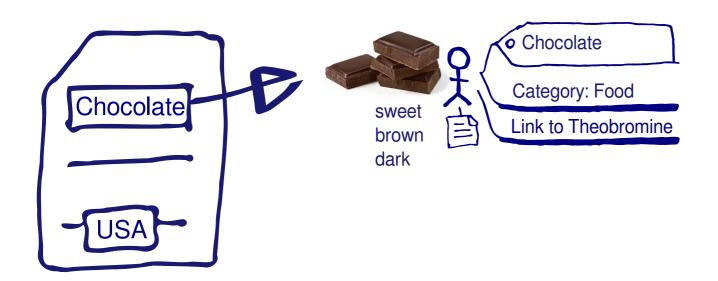


..spots mentions of (Wikipedia) entities in text and disambiguates among similarly named entities.

Wikipedia Entities

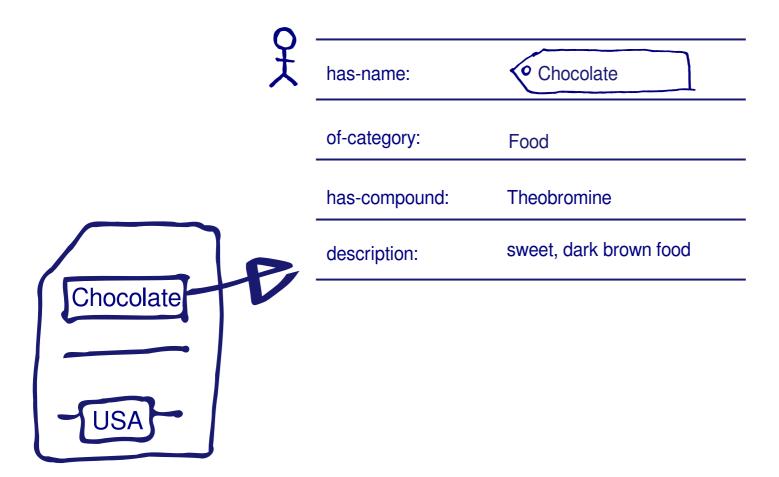
1 Wikipedia page = 1 entity

not just people, organization, and places also: Brexit, Economy, Immigration, Chocolate

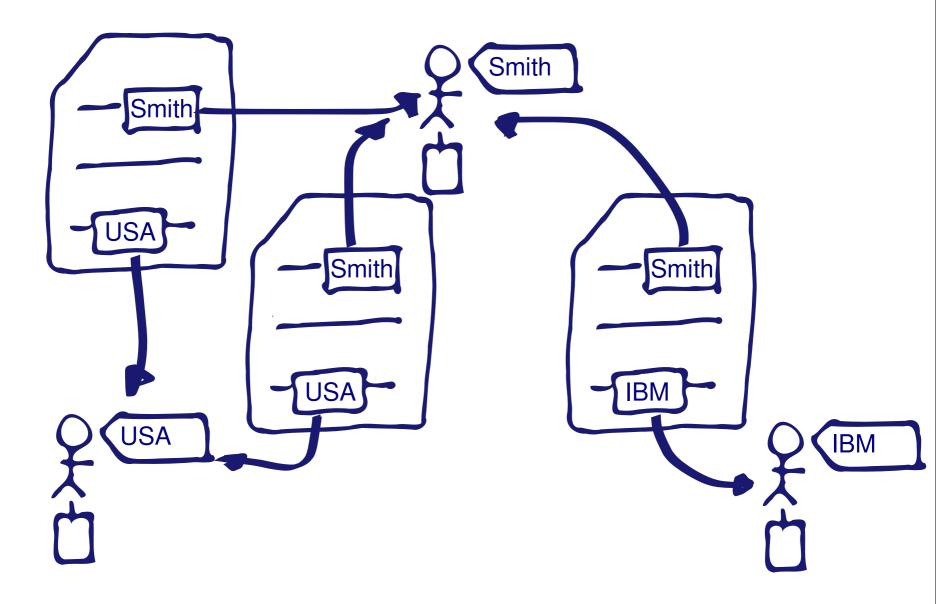


Entities from Ontologies / Knowledge Graphs

Other resources define semi-structured entities



Entity Linking to Inspect your Collection



Laura Dietz dietz@cs.unh.edu - Summer School Series on Methods for Computational Social Science 2018

Entity Linking Toolkits

- TagMe!
- Smaph
- DBpedia Spotlight
- AIDA

-

Idea: You can set up your own Wiki server define concepts important to your research and generate some training links.

Entity Linking Issues

Entity links are not saying much about topics.

One could use Wikipedia's categories. But these are often very surprisingly incomplete, inconsistent, and too fine-grained.

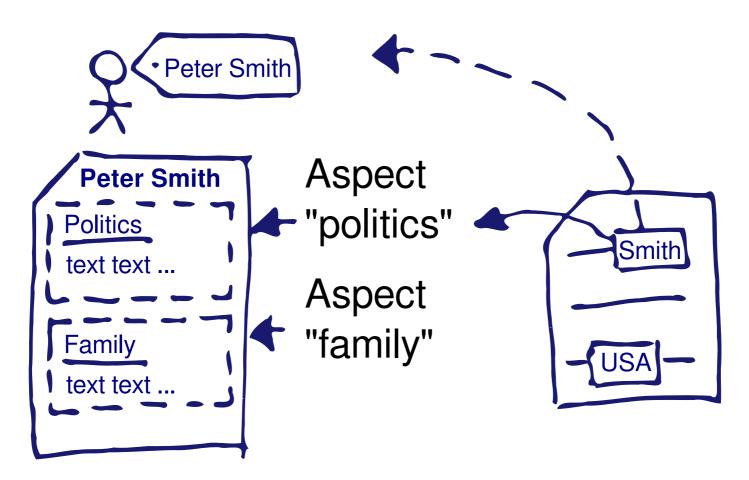
Outline: Entity Aspects

Different techniques to inspect your documents.

- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

Entity Aspect Linking

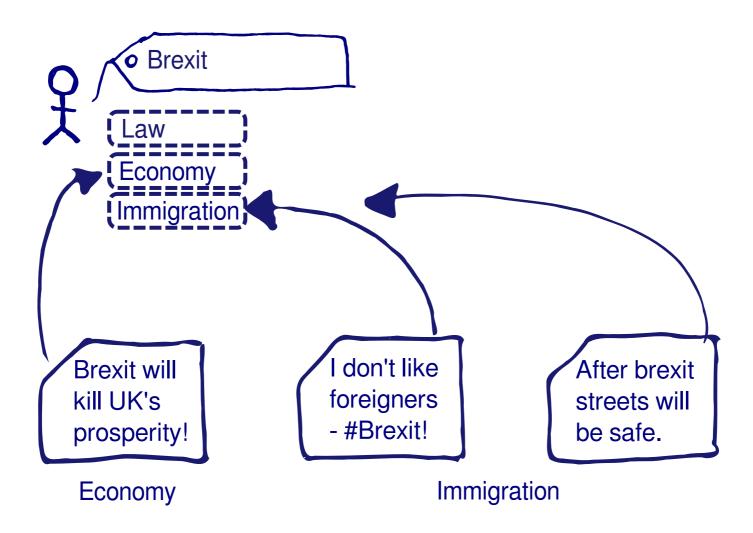
Harvested from sections of the entity's Wiki article.



Refine entity links with aspects that match context.

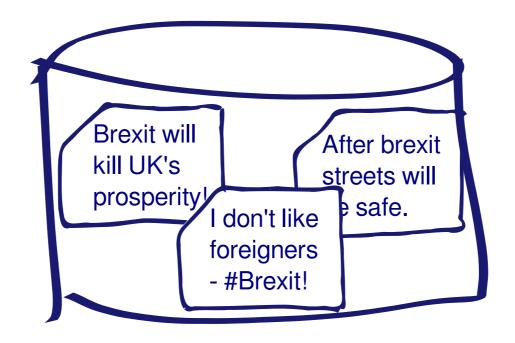
Entity Aspect Example Application

Twitter classification into different aspects of Brexit.



Search Index

Create a search index with documents.



Create different descriptions of your topic. Use description = query to retrieve top 10.

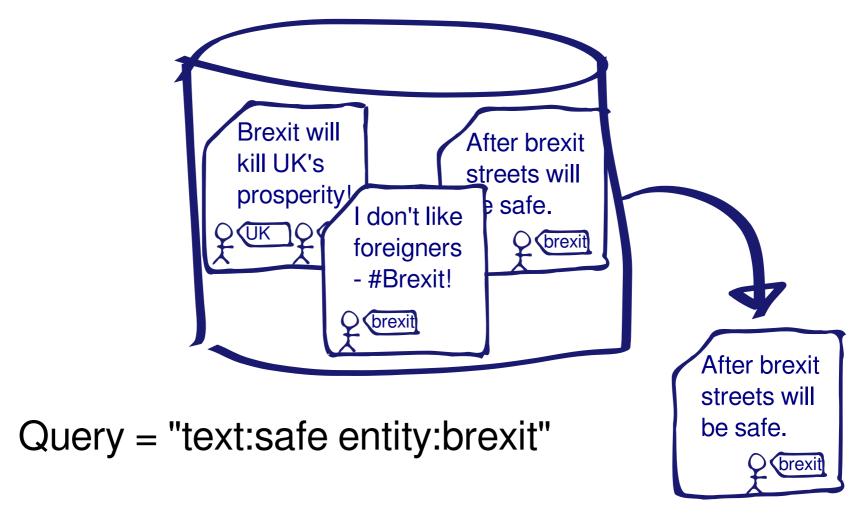
Outline: Search Index and Retrieval

Different techniques to inspect your documents.

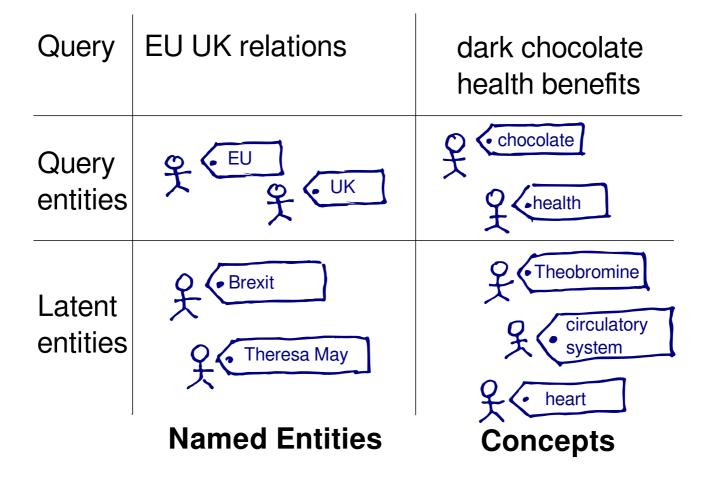
- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

Search Index with Entities

Documents can have fields:

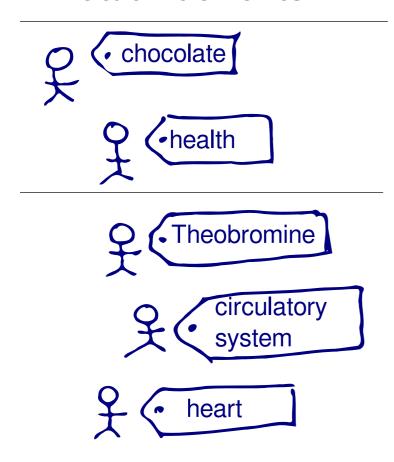


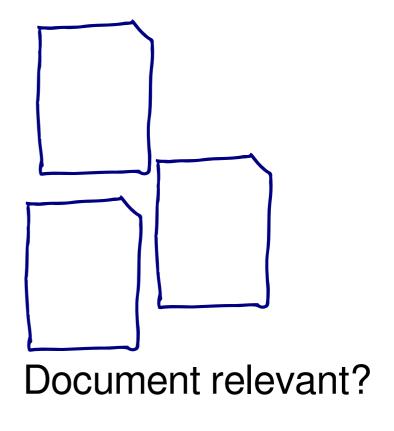
Relevant Entities



Matching Entities in Documents

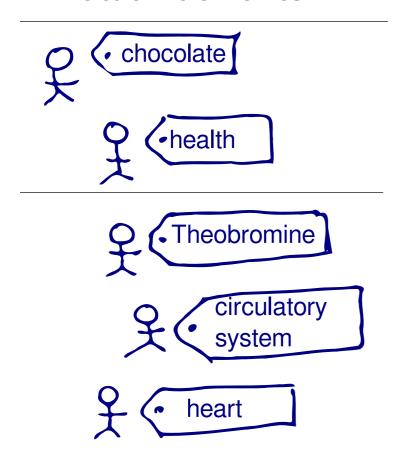
Q: dark chocolate health benefits

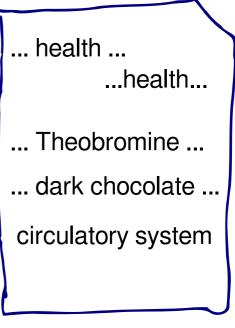




Matching Entities in Documents by Name

Q: dark chocolate health benefits

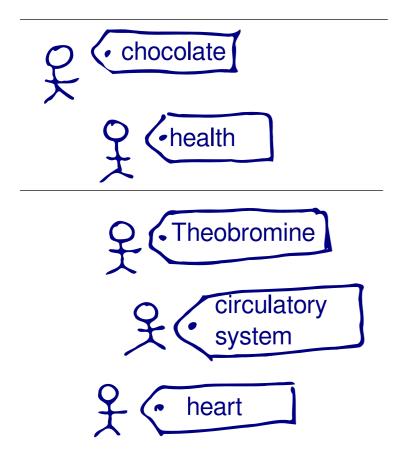


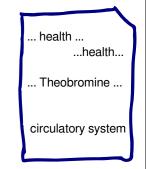


Document relevant?

Matching Entities in Documents by Name

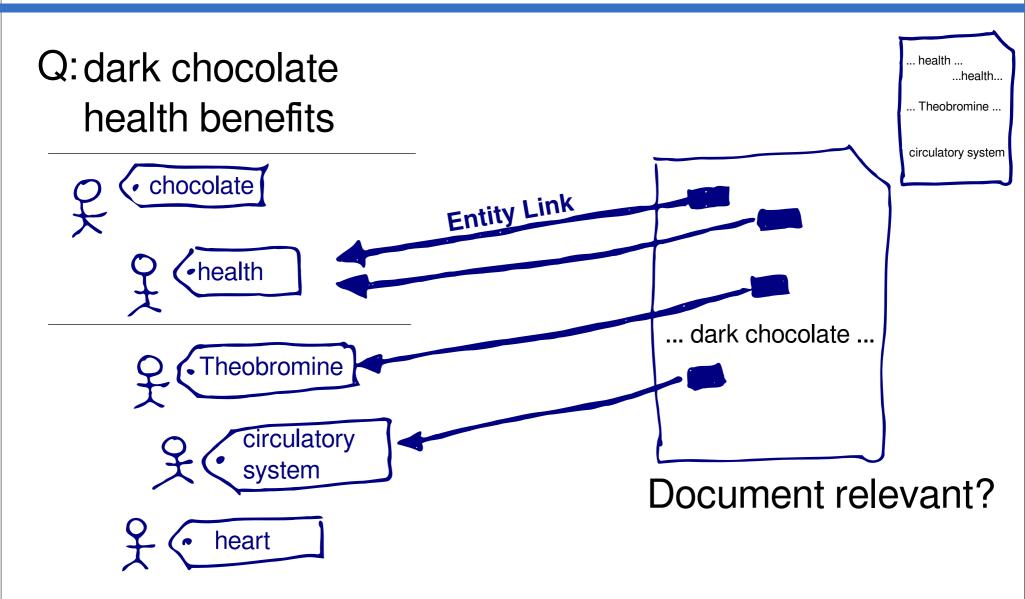
Q: dark chocolate health benefits





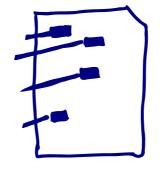
Document relevant?

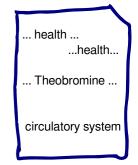
Matching Entities in Documents by Entity Links

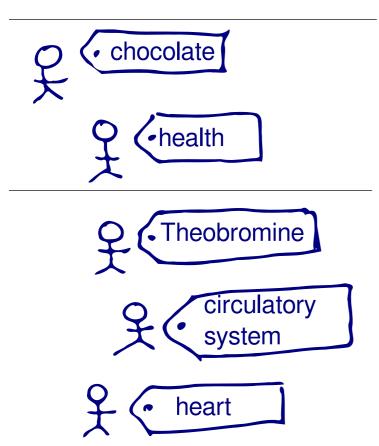


Matching Entities in Documents by Entity Links

Q: dark chocolate health benefits



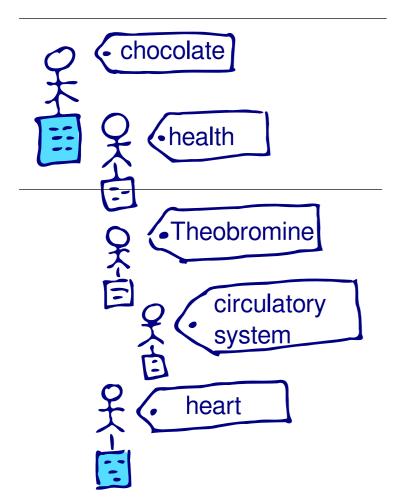


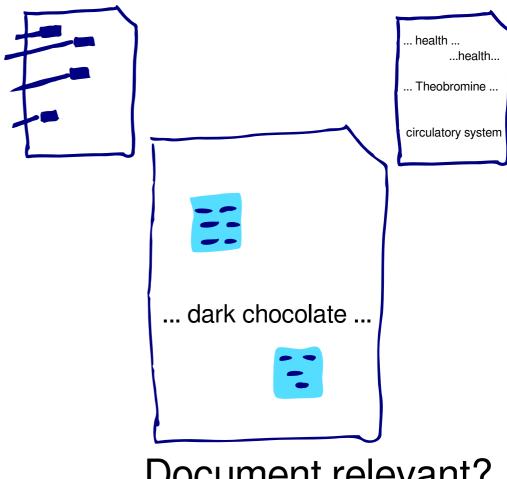


Document relevant?

Matching Entities in Documents by Article Terms

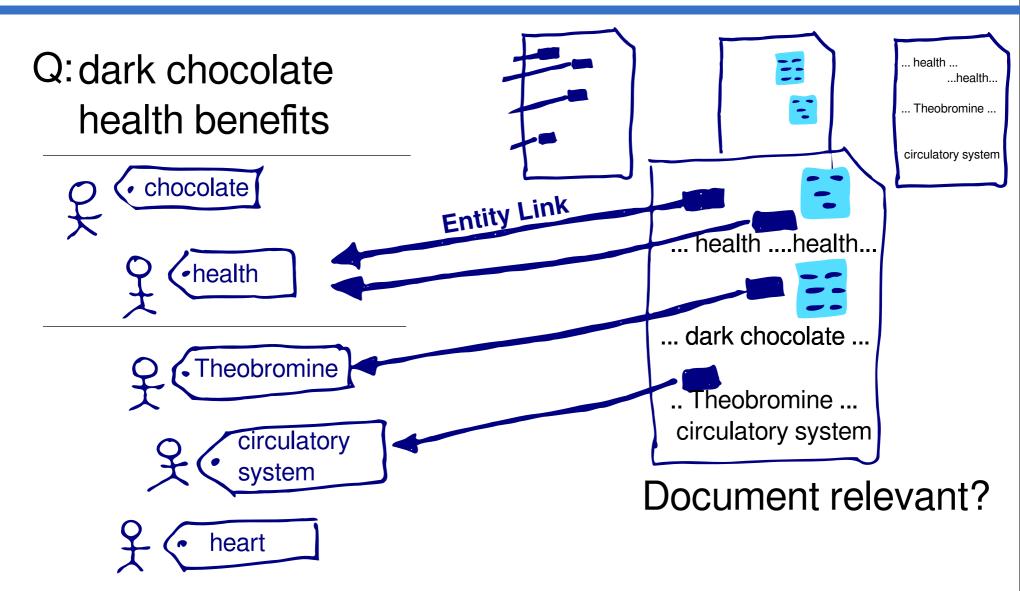
Q: dark chocolate health benefits



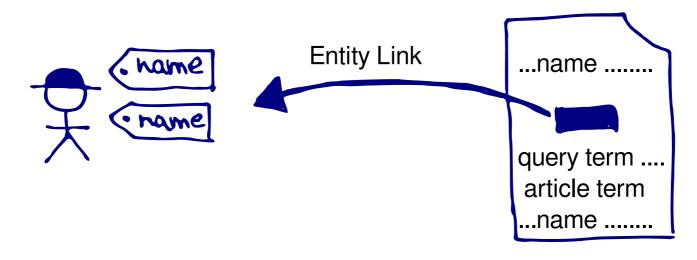


Document relevant?

Combine All Names, Links, Terms



Using Entities as a Vocabulary of Concepts



$$score(\square) = \lambda_1 query terms +$$

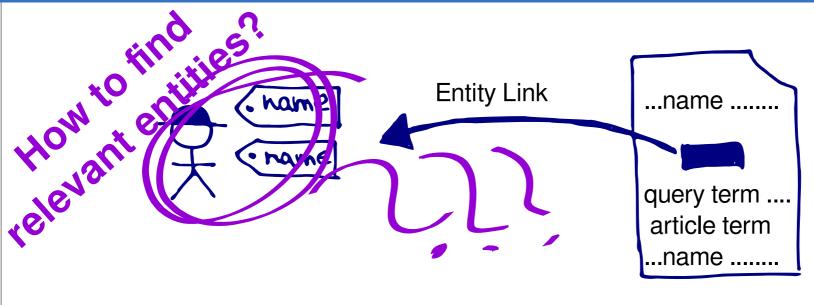
 λ_2 names +

use your favorite retrieval model here!

$$\lambda_3$$
entity links +

 λ_4 article terms + ...

Using Entities as a Vocabulary of Concepts



$$score(\square) = \lambda_1 query terms +$$

$$\lambda_2$$
names +

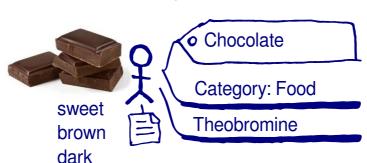
use your favorite retrieval model here!

$$\lambda_3$$
entity links +

$$\lambda_4$$
article terms + ...

Query Entities through Entity Linking

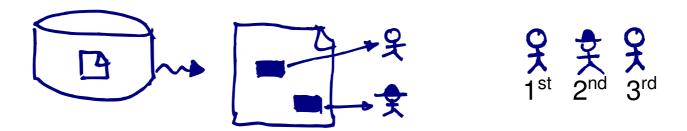
Query: dark chocolate health benefits



Latent Entities through Pseudo-Relev. Feedback

- 1. Retrieve documents with a query
- 2. Entity link documents
- 3. Derive distribution over \S (bag of entities) (see pseudo relevance feedback / RM3)

[Dalton et al 14, Liu & Fang 15]

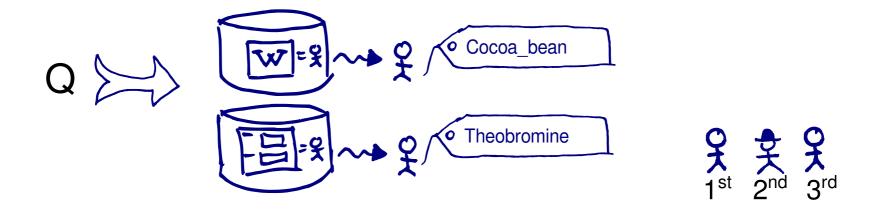


Latent Entities through Retrieval

Index Wikipedia pages or attribute sets of entities

Retrieve entities from knowledge base to obtain ranking of entities (with score)

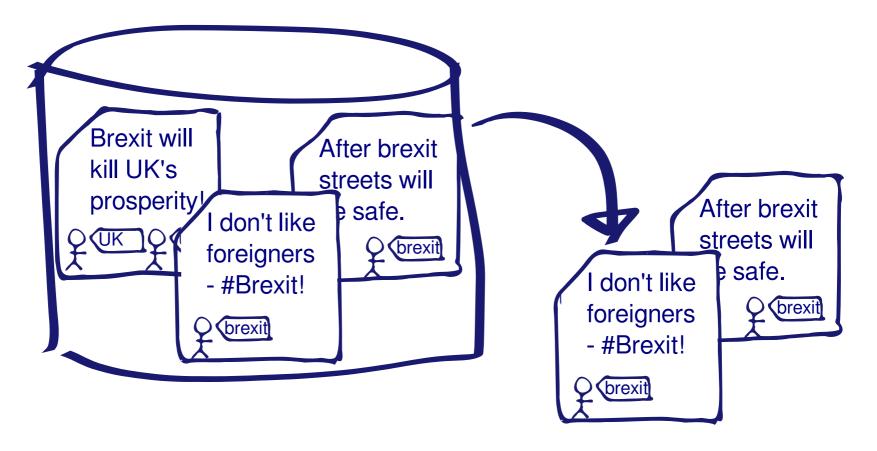
[Pound et al 10, Niklaev et al 16, Balog 18]



Entities Documents Query Entities known -> to be relevant Docs we -> want to rank

Search Index with Entities

Query = "text:safe entity:brexit entity: entity1 entity2 entity3 ...



Laura Dietz dietz@cs.unh.edu - Summer School Series on Methods for Computational Social Science 2018

Search Index (and Information Retrieval) Toolkits

IR:

- Lucene (Java) / PyLucene
- Combining different retrievals: Learning 2 Rank
- Ranking SVM, RankLib
- Entity Retrieval: NordLys

Utilizing Knowledge Graphs for Information Retrieval:

- my tutorial: github.com/laura-dietz/tutorial-utilizing-kg
- "KG4IR" Workshop at SIGIR Conference
- Upcoming Special Issue

Search Index with Entities

Query = "text:safe entity:brexit entity: entity1 entity2 entity3 ... text: name1 name2 name3 ... text: word1 word2 word3 ..." Brexit will After brexit kill UK's streets will prosperity After brexit e safe. I don't like streets will brexit foreigners e safe. I don't like - #Brexit! **(**brexit foreigners brexit - #Brexit! brexit

Search Index (and Information Retrieval) Issues

Issue 1:

You need to guess a topic to look for.

Issue 2:

You still need to refine the results.

Citations

Topic Models: Blei & Lafferty. "Topic models." Text Mining. Chapman and Hall, 2009.

Word Embeddings: Levy & Goldberg. "Dependency-based word embeddings." ACL 2014.

Entity Linking: Ji & Grishman, "Knowledge base population: Successful approaches and challenges." NAACL-HLT, 2011.

Aspects: Nanni, Ponzetto, Dietz, "Entity-aspect linking: providing fine-grained semantics of entities in context", JCDL 2018.

Information Retrieval:

Learning to Rank: Liu et al, "Learning to rank for information retrieval", FnTIR, 2009.

Entity Retrieval:

Pound, Mika, Zaragoza. "Ad-hoc object retrieval in the web of data", WWW, 2010.

Nikolaev, Kotov, Zhiltsov. "Parameterized fielded term dependence models for ad-hoc entity retrieval from knowledge graph", SIGIR 2016.

Balog. "Entity-Oriented Search (The Information Retrieval Series)", 2018, Springer.

IR with Entities:

Dietz, Kotov, Meij, "Utilizing Knowledge Graphs for Text-Centric Information Retrieval.", SIGIR 2018.

Dalton, Dietz, Allan, "Entity query feature expansion using knowledge base links", SIGIR 2014.

Liu & Fang, "Latent entity space: a novel retrieval approach for entity-bearing queries.", IRJ, 2015.

Xiong, Callan, Liu, "Word-Entity Duet Representations for Document Ranking", SIGIR, 2017.

Conclusions

Different techniques to inspect your documents.

- topic models
- word embeddings
- text classification
- entity linking
- entity aspects
- search index and retrieval (with entities)

There is no fool-proof method.

Make sure the tools are doing what you need!